Analysis of ductile crack growth in pipe test in STYLE project

Shengjun Yin, Paul T. Williams, Hilda B. Klasky, B. Richard Bass

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management - non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE's Mock-Up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of a ferritic surge pipe, with an internal circumferential crack, are being simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard- Needleman (GTN) model. Both FEACrack [1] and ABAQUS [2] general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodologies such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A2 methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-Up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages487-496
Number of pages10
EditionPARTS A AND B
ISBN (Print)9780791855058
DOIs
StatePublished - 2012
EventASME 2012 Pressure Vessels and Piping Conference, PVP 2012 - Toronto, ON, Canada
Duration: Jul 15 2012Jul 19 2012

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
NumberPARTS A AND B
Volume6
ISSN (Print)0277-027X

Conference

ConferenceASME 2012 Pressure Vessels and Piping Conference, PVP 2012
Country/TerritoryCanada
CityToronto, ON
Period07/15/1207/19/12

Fingerprint

Dive into the research topics of 'Analysis of ductile crack growth in pipe test in STYLE project'. Together they form a unique fingerprint.

Cite this