Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method

J. M. Risner, E. D. Blakeman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.

Original languageEnglish
Title of host publicationISRD 2014 - International Symposium on Reactor Dosimetry
EditorsAbdallah Lyoussi
PublisherEDP Sciences
ISBN (Electronic)9782759819294
DOIs
StatePublished - Feb 3 2016
Event15th International Symposium on Reactor Dosimetry, ISRD 2014 - Aix en Provence, France
Duration: May 18 2014May 23 2014

Publication series

NameEPJ Web of Conferences
Volume106
ISSN (Print)2101-6275
ISSN (Electronic)2100-014X

Conference

Conference15th International Symposium on Reactor Dosimetry, ISRD 2014
Country/TerritoryFrance
CityAix en Provence
Period05/18/1405/23/14

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the US Government purposes.

Fingerprint

Dive into the research topics of 'Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method'. Together they form a unique fingerprint.

Cite this