Analysis of a computational biology simulation technique on emerging processing architectures

Jeremy S. Meredith, Sadaf R. Alam, Jeffrey S. Vetter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Multi-paradigm, multi-threaded and multi-core computing devices available today provide several orders of magnitude performance improvement over mainstream microprocessors. These devices include the STI Cell Broadband Engine, Graphical Processing Units (GPU) and the Cray massively-multithreaded processors-available in desktop computing systems as well as proposed for supercomputing platforms. The main challenge in utilizing these powerful devices is their unique programming paradigms. GPUs and the Cell systems require code developers to manage code and data explicitly, while the Cray multithreaded architecture requires them to generate a very large number of threads or independent tasks concurrently. In this paper, we explain strategies for optimizing a molecular dynamics (MD) calculation that is used in bio-molecular simulations on three devices: Cell, GPU and MTA-2. We show that the Cray MTA-2 system requires minimal code modification and does not outperform the microprocessor runs; but it demonstrates an improved workload scaling behavior over the microprocessor implementation. On the other hand, substantial porting and optimization efforts on the Cell and the GPU systems result in a 5x to 6x improvement, respectively, over a 2.2 GHz Opteron system.

Original languageEnglish
Title of host publicationProceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
DOIs
StatePublished - 2007
Event21st International Parallel and Distributed Processing Symposium, IPDPS 2007 - Long Beach, CA, United States
Duration: Mar 26 2007Mar 30 2007

Publication series

NameProceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM

Conference

Conference21st International Parallel and Distributed Processing Symposium, IPDPS 2007
Country/TerritoryUnited States
CityLong Beach, CA
Period03/26/0703/30/07

Fingerprint

Dive into the research topics of 'Analysis of a computational biology simulation technique on emerging processing architectures'. Together they form a unique fingerprint.

Cite this