Abstract
Index modulation-based orthogonal division multiple access (IM-OFDMA) has recently been proposed as a potential technique for future wireless communication systems due to its superior spectral efficiency and error performance over conventional multiple access schemes. However, its performance is still under investigation by researchers in light of a variety of scenarios and assumptions. Following this direction, in this Article, the individual and joint effects of the transmitter (Tx) and receiver (Rx) in-phase and quadrature imbalances (IQI) on the bit-error-rate (BER) performance of the uplink IM-OFDMA scheme are investigated by considering whether each user's RF front-end is identical or not. Moreover, to reduce the detrimental effect of IQI, a preamble-based estimation and compensation method is proposed for IM-OFDMA. Closed-form expressions for the average BER of IM-OFDMA are obtained by considering the physical effect of the Tx and Rx IQI. Also, using Monte Carlo simulations, the derived expressions are verified under different system configurations. Analytical and simulation results reveal that Tx and Rx IQI cause an error floor in the BER performance of IM-OFDMA schemes. However, the proposed estimation and compensation method not only reduces the impact of IQI but also leads to a better BER performance compared to the case of no IQI, which mainly refers to the frequency diversity caused by the IQI.
Original language | English |
---|---|
Pages (from-to) | 12956-12969 |
Number of pages | 14 |
Journal | IEEE Transactions on Vehicular Technology |
Volume | 72 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2023 |
Funding
This work was supported in part by the Qatar National Research Fund (a member of The Qatar Foundation) under Grant NPRP14C-0909-21008.
Funders | Funder number |
---|---|
Qatar National Research Fund | NPRP14C-0909-21008 |
Keywords
- IM-OFDMA
- IQ imbalance
- Multiple access
- estimation and compensation