An interpretable machine learning framework to understand bikeshare demand before and during the COVID-19 pandemic in New York City

Majbah Uddin, Ho Ling Hwang, Md Sami Hasnine

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In recent years, bikesharing systems have become increasingly popular as affordable and sustainable micromobility solutions. Advanced mathematical models such as machine learning are required to generate good forecasts for bikeshare demand. To this end, this study proposes a machine learning modeling framework to estimate hourly demand in a large-scale bikesharing system. Two Extreme Gradient Boosting models were developed: one using data from before the COVID-19 pandemic (March 2019 to February 2020) and the other using data from during the pandemic (March 2020 to February 2021). Furthermore, a model interpretation framework based on SHapley Additive exPlanations was implemented. Based on the relative importance of the explanatory variables considered in this study, share of female users and hour of day were the two most important explanatory variables in both models. However, the month variable had higher importance in the pandemic model than in the pre-pandemic model.

Original languageEnglish
Pages (from-to)482-498
Number of pages17
JournalTransportation Planning and Technology
Volume46
Issue number4
DOIs
StatePublished - 2023

Funding

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Keywords

  • Bikeshare
  • Citi Bike
  • New York City
  • SHAP
  • machine learning

Fingerprint

Dive into the research topics of 'An interpretable machine learning framework to understand bikeshare demand before and during the COVID-19 pandemic in New York City'. Together they form a unique fingerprint.

Cite this