An image compositing solution at scale

Kenneth Moreland, Wesley Kendall, Tom Peterka, Jian Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

41 Scopus citations

Abstract

The only proven method for performing distributed-memory parallel rendering at large scales, tens of thousands of nodes, is a class of algorithms called sort last. The fundamental operation of sort-last parallel rendering is an image composite, which combines a collection of images generated independently on each node into a single blended image. Over the years numerous image compositing algorithms have been proposed as well as several enhancements and rendering modes to these core algorithms. However, the testing of these image compositing algorithms has been with an arbitrary set of enhancements, if any are applied at all. In this paper we take a leading production-quality image-compositing framework, IceT, and use it as a testing framework for the leading image compositing algorithms of today. As we scale IceT to ever increasing job sizes, we consider the image compositing systems holistically, incorporate numerous optimizations, and discover several improvements to the process never considered before. We conclude by demonstrating our solution on 64K cores of the Intrepid Blue-Gene/P at Argonne National Laboratories.

Original languageEnglish
Title of host publicationProceedings of 2011 SC - International Conference for High Performance Computing, Networking, Storage and Analysis
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC11 - Seattle, WA, United States
Duration: Nov 12 2011Nov 18 2011

Publication series

NameProceedings of 2011 SC - International Conference for High Performance Computing, Networking, Storage and Analysis

Conference

Conference2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC11
Country/TerritoryUnited States
CitySeattle, WA
Period11/12/1111/18/11

Keywords

  • Image compositing
  • Parallel scientific visualization

Fingerprint

Dive into the research topics of 'An image compositing solution at scale'. Together they form a unique fingerprint.

Cite this