An experimental evaluation of material separability in photon-counting ct

Jayasai R. Rajagopal, Faraz Farhadi, Ayele H. Negussie, Ehsan Abadi, Pooyan Sahbaee, Babak Saboury, Ashkan A. Malayeri, William F. Pritchard, Elizabeth C. Jones, Ehsan Samei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Signal separability is an important factor in the differentiation of materials in spectral computed tomography. In this work, we evaluated the separability of two such materials, iodine and gadolinium with k-edges of 33.1 keV and 50.2 keV, respectively, with an investigational photon-counting CT scanner (Siemens, Germany). A 20 cm water equivalent phantom containing vials of iodine and gadolinium was imaged. Two datasets were generated by either varying the amount of contrast (iodine - 0.125-10 mg/mL, gadolinium 0.125-12 mg/mL) or by varying the tube current (50-300 mAs). Regions of interest were drawn within vials and then used to construct multivariate Gaussian models of signal. We evaluated three separation metrics using the Gaussian models: the area under the curve (AUC) of the receiver operating characteristic curve, the mean Mahalanobis distance, and the Jaccard index. For the dataset with varying contrast, all three metrics showed similar trends by indicating a higher separability when there was a large difference in signal magnitude between iodine and gadolinium. For the dataset with varying tube current, AUC showed the least variation due to change in noise condition and had a higher coefficient of determination (0.99, 0.97) than either mean Mahalanobis distance (0.69, 0.62) or Jaccard index (0.80, 0.75) when compared to material decomposition results for iodine or gadolinium respectively.

Original languageEnglish
Title of host publicationMedical Imaging 2021
Subtitle of host publicationPhysics of Medical Imaging
EditorsHilde Bosmans, Wei Zhao, Lifeng Yu
PublisherSPIE
ISBN (Electronic)9781510640191
DOIs
StatePublished - 2021
Externally publishedYes
EventMedical Imaging 2021: Physics of Medical Imaging - Virtual, Online, United States
Duration: Feb 15 2021Feb 19 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11595
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2021: Physics of Medical Imaging
Country/TerritoryUnited States
CityVirtual, Online
Period02/15/2102/19/21

Funding

This study was supported by the National Institutes of Health (NIH) Clinical Center Radiology and Imaging Sciences (RADIS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R01 EB001838) and the NIH Intramural Research Program (NIH Z01 1ZID BC011242, and CL040015). The NIH and Siemens Medical Solutions have a Cooperative Research and Development Agreement providing financial and material support including the photon-counting CT system. The content of this manuscript does not necessarily reflect the views or policies of the Department of Health and Human Services, nor do mention of trade names, commercial products, or organizations imply endorsement by the United States Government.

FundersFunder number
National Institutes of Health
National Institute of Biomedical Imaging and BioengineeringZ01 1ZID BC011242, R01 EB001838, CL040015

    Keywords

    • Computed tomography
    • Material decomposition
    • Photon counting
    • Signal separation

    Fingerprint

    Dive into the research topics of 'An experimental evaluation of material separability in photon-counting ct'. Together they form a unique fingerprint.

    Cite this