An evaluation of the CORAL interconnects

Christopher Zimmer, Scott Atchley, Ramesh Pankajakshan, Brian E. Smith, Ian Karlin, Matthew L. Leininger, Adam Bertsch, Brian S. Ryujin, Jason Burmark, André Walker-Loud, M. A. Clark, Olga Pearce

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Scopus citations

Abstract

The US Department of Energy deployed the Summit and Sierra supercomputers with the latest state-of-the-art network interconnect technology in 2018 and both systems entered production in 2019. In this paper, we provide an in-depth assessment of the systems' network interconnects that are based on Enhanced Data Rate (EDR) 100 Gb/s Mellanox InfiniBand. Both systems use second-generation EDR Host Channel Adapters (HCAs) and switches with several new features such as Adaptive Routing (AR), switch-based collectives, and HCA-based tag matching. Although based on the same components, Summit's network is "non-blocking" (i.e., a fully provisioned Clos network) and Sierra's network has a 2:1 taper between the racks and aggregation switches. We evaluate the two systems' interconnects using traditional communication benchmarks as well as production applications. We find that the new Adaptive Routing dramatically improves performance but the other new features still need improvement.

Original languageEnglish
Title of host publicationProceedings of SC 2019
Subtitle of host publicationThe International Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9781450362290
DOIs
StatePublished - Nov 17 2019
Event2019 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2019 - Denver, United States
Duration: Nov 17 2019Nov 22 2019

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2019 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2019
Country/TerritoryUnited States
CityDenver
Period11/17/1911/22/19

Funding

This work was performed under the auspices of the U.S. DOE by Oak Ridge Leadership Computing Facility at ORNL under contract DE-AC05-00OR22725. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
Oak Ridge National LaboratoryDE-AC05-00OR22725
U.S. Department of Energy

    Keywords

    • Bandwidth
    • Congestion
    • EDR
    • High performance computing
    • InfiniBand
    • Interconnect
    • Latency
    • Offload
    • Switch collectives
    • Tag matching

    Fingerprint

    Dive into the research topics of 'An evaluation of the CORAL interconnects'. Together they form a unique fingerprint.

    Cite this