An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

Yunlong Liu, Aiping Wang, Lei Guo, Hong Wang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic systems. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization is compared with the mean-square-error minimization in the simulation results.

Original languageEnglish
Pages (from-to)10407-10412
Number of pages6
JournalIFAC-PapersOnLine
Volume50
Issue number1
DOIs
StatePublished - Jul 2017
Externally publishedYes

Funding

Indus∗∗tSrtieaste, NKoerythLeaabsoterarntorUynoivfeSrsyintyth,eStihceanlyAauntgom11a0t8io1n9,foCrhiPnraoc(ees-smail: IndustSrtieaste, NKoerythLeaabsoterarntorUynoivfeSrsyintyth,eStihceanlyAauntgom11a0t8io1n9,foCrhiPnraoc(ees-smail: ∗∗Institute of CompulitueyruSnclioenngcbeusa, [email protected])ersity, Anhui, China ∗∗∗∗∗Institute of CompulitueyruSnclioenngcbeusa,[email protected])ersity, Anhui, China ∗∗∗ISncsiteitnuctee aonfdCTomecphuntoelrogSycioenncAesir,cAranfthuCioUnntriovlerLsaibtyo,raAtonrhyu,i,BCeihhiannag ∗∗∗ISncsiteitnucte aonfdCTomecphuntoelrogSycioenncAesir,cAranfthuCioUnntriovlerLsaibtyo,raAtonrhyu,i,BCeihhiannag ∗∗∗UScniievnecresitayn,dBTeeijcihnngo1lo0g0y19o1n, ACihrcinraaft(eC-monatirlo:[email protected],uB.cenih)ang ∗US∗cn∗i∗ievnecresitayn,dBTeeijcihnngo1lo0g0y19o1n, ACihrcinraaft(eC-monatirlo:[email protected],uB.cenih)ang UnivPerasciitfyic, BNeoirjitnhwg e1s0t0N19a1ti,oCnahlinLaab(oer-amtoarily:,[email protected])d ∗U∗n∗∗ivPerasciitfyic, BNeoirjitnhwg e1s0t0N19a1ti,oCnahlinLaab(oer-amtoarily:,[email protected])d ∗∗∗∗∗∗∗∗RicPhalacnifdic, WNoArt9h9w3e5s2t NUaStAion(ae-lmLaaiblo:rhaotonrgy.w, [email protected])lvd RicPhalacnifdic, WNoArt9h9w3e5s2t NUaStAion(ae-lmLaaiblo:rhaotonrgy.w, [email protected])lvd Richland, WA 99352 USA (e-mail: [email protected]) Richland, WA 99352 USA (e-mail: [email protected]) Abstract: This paper presents an error-entropy minimization tracking control algorithm for a Abstract: This paper presents an error-entropy minimization tracking control algorithm for a ncloanslsinoefadryneqaumaitciosntoschwaistthicnsoyns-tGemaus.ssTiahne ssytsotcehmasitsicreipnrpeuset,ntwedhebrye athseetsotfattiimstiec-avlarpyrionpgedrtisiecsretoef nloanslsinoefadryneqaumaitciosntoschwaistthicnsoyns-tGemaus.ssTiahne ssytsotcehmasitsicreipnrpeuset,ntwedhebrye athseetsotfattiimstiec-avlarpyrionpgedrtisiecsretoef sntoonclhinaesatirc einqpuuattioanrse uwnitkhnonwonn.-GBayusussiianng sPtaorczheanstwicinidnopwutin, gwwheitrhe Gthaeussstiaatnistkiecranlepl rtoopesrttiimesatoef ntoonclhinaesatirc einqpuuattioanrse uwnitkhnonwonn.-GBayusussiianng sPtaorczheanstwicinidnopwutin, gwwheitrhe Gthaeusstiaatnistkiecranlepl rtoopesrttiimesatoef cthonetrporlolebrasbuilcihtythdaetntshiteietsraocfkinergroerrsr,orrceacnurbsievemianligmorizitehdm. Ts haerepetrhfoernmapnrocep osfetdhetoerrdoers-iegnntrotphye chonetrporlolebrasbuilcihtythdaetntshiteietsraocfkinergroerrsr,orrceacnurbsievemianligmorizitehdm. Ts haerepetrhfoernmapnrocep osfetdhetoerrdoers-iegnntrotphye mcointirmolilzeartisounchistchoamt pthaeretdrawckitihngtheerrmorecaann-sbqueamrei-neirmroizremd.inTihmeizpaetriofonrminanthce soifmtuhleateirornorr-esnutrltosp.y mointirmolilzeartisounchistchoamt pthaeretdrawckitihngtheerrmorecaann-sbqueamrei-neirmroizremd.inTihmeizpaetriofonrminanthce soifmtuhleateirornorr-esnutrltosp.y © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Keywords: Minimum error entropy, information potential, non-Gaussian variables, probability Keywords: Minimum error entropy, information potential, non-Gaussian variables, probability dKeenyswitoyrdfus:nMctiionnim, sutmocherarsotricesnytsrtoepmy,s.information potential, non-Gaussian variables, probability dKeenyswitoyrdfus:nMctiionnim, sutmocherarsotricesnytsrtoepmy,s.information potential, non-Gaussian variables, probability density function, stochastic systems. density function, stochastic systems. 1. INTRODUCTION 1. INTRODUCTION 1. INTRODUCTION Stochastic control is an active part of control theory which Stochastic control is an active part of control theory which Sdteoaclshawstiitchcodnattraol tihs aatn acretivpeopllaurtteodf cboyntsrtool cthhaesotriyc wnhoiicshe Stoaclshawstiitchcodnattraol tihs aatn acretivpeopllaurtteodf cboyntsrtool cthhaesotriyc wnhoiicshe aconndtrtohlleeraitmhatof psetrofcohrmassticthceondtersoilreids tco ndtreosligntasokptwimitahl conndtrtohlleeraitmhatof psetrofcohrmassticthceondtersoilreids tco ndtreosligntasokptwimitahl cmoinntirmoullmer ctohsattdpesepriftoermthse tehxeistdeenscireeodf cthonesterodl isttausrkbawnicteh. coinntirmoullmer ctohsattdpesepriftoermthse tehxeistdeenscireeodf cthonesterodl isttausrkbawnicteh. mAlionnimguwmithcostthededspeviteelotphme enxtistoefncPeonotfrtyhaegsien’dsismtuarxbiamnucme. mlionnimguwmithcostthededspeviteelotphme enxtistoefncPeonotfrtyhaegsien’dsismtuarxbiamnucme. panridncKipalelm(aMn’Ps),linBeealrlm-qauna’dsradtyicna(mLiQc)pcroongtrraoml,msitnogch(aDstPic) anridncKipalelm(aMn’Ps),linBeealrlm-qauna’dsradtyicna(mLiQc)pcroongtrraoml,msitnogch(aDstPic) o1p96ti0ms awl hciocnhtrmolatinhleyorfyochuassobneeGnawuseslliadnevsetolocpheadstsicinscyesetaemrlys op6ti0ms awl hciocnhtrmolatinhleyorfyochuassobneeGnawuseslliadnevsetolocpheadstsicinscyesetaemrlys 1u9n6d0esr wthhiechamssauimnlpytifoncusthoant GtahuessniaonisesstocohbaesyticGsayusstseimans u9n6d0esr wthhiechamssauimnlpytifooncusthoant GtahuessniaonisesstocohbaesyticGsayusstseimans udnisdtreirbutthioena(ssseuemAptthioans t[h19a7t1]t)h.e noises obey Gaussian unsdtreirbutthioena(ssseuemAptthioans t[h19a7t1]t)h.e noises obey Gaussian distribution (see Athans [1971]). Hdioswtreivbeurt,iomno(sstereeaAl-tlhifaenssy[s1t9e7m1s])a. re governed by nonlinear However, most real-life systems are governed by nonlinear mGaoudseslisananddistmriobsuttesdto. cThahsetriecfonreo,isesstoachreastfaicr dfrisotmribbuetiinong Gaoudseslisananddistmriobsuttesdto. cThahsetriecfonreo,isesstoachreastfaicr dfrisotmribbuetiinong creofnetrreonlce(sseteherWeiann)gfor[2n0o0n0-]G, aYuusesiaannsdtoWchaanstgic [s2y0s0t3em] ahnads ceofnetrreonlce(sseteherWeiann)gfor[2n0o0n0-]G, aYuusesiaannsdtoWchaanstgic [s2y0s0t3em] ahnads rbefeenresntcuedsiethdeerxeitne)nsfiovrenlyonin-Greacuesnstiayneastroscihnarsetsicposynssteetmo hthaes beefeenresntcuedsiethdeerxeitne)nsfiovrenlyonin-Greacuesnstiayneastroscihnarsetsicposynssteetmo hthaes binecerneassteuddieredqeuxirteemnseivnetslyoinf rmecaennyt yperaarcstiicnalressypsotnemsest.oTthhe bnecerneassteuddieredqeuxirteemnseivnetslyoinf rmecaennyt yperaarcstiicnalressypsotnemsest.oTthhee pdreismiganrycopnutrrpolosienpouf tstsoucchhastthicatditshtreibpurtoiobnabciolintytrodlenissittyo deismiganrycopnutrrpolosienpouf tstsoucchhastthicatditshtreibpurtoiobnabciolintytrodlenissittyo dfuensicgtnionco(nPtDroFl) ionfpcuotrrseuspchontdhinagt rtahnedopmrobvaarbiialbitlye idsemnsaidtye fuensicgtnionco(nPtDroFl) ionfpcuotrrseuspchontdhinagt rtahnedopmrobvaarbiialbitlye idsemnsaidtye function (PDF) of corresponding random variable is made ⋆function (PDF) of corresponding random variable is made ⋆ This work was supported in part by the National Natural Science ⋆ This work was supported in part by the National Natural Science F⋆oTunhdisatwioonrkowfaCshsiunpapourntdederinGpraanrt b6y13t3h3e0N07a,ti6o1n6a2l1N0a0t4u,r6a1l5S7c3ie0n2c2e, FoTunhdisatwioonrkowf aCshsiunpapourntdederinGpraanrtt b6y13t3h3e0N07a,ti6o1n6a2l1N0a0t4u,r6a1l 5S7c3ie0n2c2e, FhoeunCdhaitnieosne oNfaCtiohninaal Puonsdte-droGctroarntSc6ie1n3c3e30F0o7u,n6d1a6t2io1n00u4n,d6e1r5G73ra0n2t2s, th0e15CMh5in7e1s3e22NaatnidonCalCPSoIsot-fdtohcetoPraSccifiiecnNceorFtohuwnedsattNioantiuonndaelrLGabraonrats-th0e15CMh5in7e1s3e22NaatnidonCalCPSoIsot-fdtohcetoPraSccifiiecnNceorFtohuwnedsattNioantiuonndaelrLGabraonrats-ttoo0rr1yy5..M571322 and CCSI of the Pacific Northwest National Laboratory. Copyright © 2017 IFAC 10894 2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. CPeer review under responsibility of International Federation of Automatic Control.opyright © 2017 IFAC 10894 Copyright © 2017 IFAC 10894 10.1016/j.ifacol.2017.08.1720

Keywords

  • Minimum error entropy
  • information potential
  • non-Gaussian variables
  • probability density function
  • stochastic systems

Fingerprint

Dive into the research topics of 'An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables'. Together they form a unique fingerprint.

Cite this