TY - JOUR
T1 - An adaptive QSE-reduced nuclear reaction network for silicon burning
AU - Parete-Koon, Suzanne
AU - Hix, W. R.
AU - Thielemann, F. K.
PY - 2008
Y1 - 2008
N2 - The nuclei of the "iron peak" are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with 2 QSE groups at appropriately high temperature, then progressing through, 3 and 3 * group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications.
AB - The nuclei of the "iron peak" are formed in massive stars shortly before core collapse and during their supernova outbursts as well as during thermonuclear supernovae. Complete and incomplete silicon burning during these events are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present an improvement on our hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. Because the size and membership of these groups vary as the temperature, density and electron faction change, achieving maximal efficiency requires dynamic adjustment of group number and membership. Toward this end, we are implementing a scheme beginning with 2 QSE groups at appropriately high temperature, then progressing through, 3 and 3 * group stages (with successively more independent variables) as temperature declines. This combination allows accurate prediction of the nuclear abundance evolution, deleptonization and energy generation at a further reduced computational cost when compared to a conventional nuclear reaction network or our previous 3 fixed group QSE-reduced network. During silicon burning, the resultant QSE-reduced network is up to 20 times faster than the full network it replaces without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multi-dimensional applications.
UR - http://www.scopus.com/inward/record.url?scp=84887296784&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84887296784
SN - 1824-8039
JO - Proceedings of Science
JF - Proceedings of Science
T2 - 10th Symposium on Nuclei in the Cosmos, NIC 2008
Y2 - 27 July 2008 through 1 August 2008
ER -