TY - JOUR
T1 - All-in-one structured textile energy storage electrodes prepared via Janus bond assembly-induced electrodeposition
AU - Lee, Seokmin
AU - Ko, Younji
AU - Chang, Woojae
AU - Kwon, Cheong Hoon
AU - Kim, Younghoon
AU - Yeom, Bongjun
AU - Cho, Jinhan
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/2/15
Y1 - 2023/2/15
N2 - One of the most critical issues in developing high-performance textile-based energy storage (TES) electrodes is to effectively incorporate conductive and electrochemically active components into insulating textiles, maintaining the high mechanical flexibility and large surface area of pristine textiles. Herein, we report a high-performance TES electrode prepared from a Janus bond assembly of nonnoble metal-based nanoparticles (NPs) and subsequent electrodeposition. First, tetraoctylammonium-stabilized copper sulfide NPs (TOA-CuxS NPs) with a diameter of ∼10 nm were synthesized in organic media, which were Janus bond layer-by-layer (JB LbL)-assembled with cysteamine (CA) linkers onto cotton textiles. In this case, CA linkers directly and robustly bridged all the interfaces between the OH-functionalized textile and CuxS NPs as well as between neighboring CuxS NPs. Additionally, the JB LbL-assembled CuxS NPs perfectly converted the insulating textile to a conductive textile with a uniform fibril structure and oxidation stability. For the preparation of pseudocapacitive textiles, the subsequent Ni electrodeposition was further carried out onto the conductive and hydrophilic (TOA-CuxS NP/CA)n multilayer-coated textile. The formed TES electrodes exhibited a low sheet resistance of 0.03 Ω sq−1, a highly uniform fibril structure, a considerably high areal capacitance of 2.56 F cm−2 (at 3 mA cm−2), and high operational stability (i.e., capacity retention of 88.6 % after 10,000 cycles).
AB - One of the most critical issues in developing high-performance textile-based energy storage (TES) electrodes is to effectively incorporate conductive and electrochemically active components into insulating textiles, maintaining the high mechanical flexibility and large surface area of pristine textiles. Herein, we report a high-performance TES electrode prepared from a Janus bond assembly of nonnoble metal-based nanoparticles (NPs) and subsequent electrodeposition. First, tetraoctylammonium-stabilized copper sulfide NPs (TOA-CuxS NPs) with a diameter of ∼10 nm were synthesized in organic media, which were Janus bond layer-by-layer (JB LbL)-assembled with cysteamine (CA) linkers onto cotton textiles. In this case, CA linkers directly and robustly bridged all the interfaces between the OH-functionalized textile and CuxS NPs as well as between neighboring CuxS NPs. Additionally, the JB LbL-assembled CuxS NPs perfectly converted the insulating textile to a conductive textile with a uniform fibril structure and oxidation stability. For the preparation of pseudocapacitive textiles, the subsequent Ni electrodeposition was further carried out onto the conductive and hydrophilic (TOA-CuxS NP/CA)n multilayer-coated textile. The formed TES electrodes exhibited a low sheet resistance of 0.03 Ω sq−1, a highly uniform fibril structure, a considerably high areal capacitance of 2.56 F cm−2 (at 3 mA cm−2), and high operational stability (i.e., capacity retention of 88.6 % after 10,000 cycles).
KW - Janus bond-mediated layer-by-layer assembly
KW - Ni textile
KW - TOA-CuS nanoparticle
UR - http://www.scopus.com/inward/record.url?scp=85141985297&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2022.140150
DO - 10.1016/j.cej.2022.140150
M3 - Article
AN - SCOPUS:85141985297
SN - 1385-8947
VL - 454
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 140150
ER -