Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency

Hao Chen, Wuyou Wang, Zhenzhen Yang, Xian Suo, Ziyang Lu, Weiming Xiao, Sheng Dai

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Graphitic carbon nitride (g-C3N4) possesses fascinating merits, but its practical applications are limited by the inferior properties of limited visible-light sorption, rapid recombination of photo-excited charge carriers and low electrical conductivity. Introduction of N-defects is an efficient approach to tune its optical properties, but strategies capable of creating abundant vacancies and simultaneously maintaining the highly crystalline architecture are still limited and highly desired. In this work, a facile construction methodology was demonstrated to afford g-C3N4with abundant N vacancies, high crystallinity, a hydrophilic surface structure, a small particle size, and an increased surface area under neat and mild conditions. The essence of our approach lies in the treatment of the bulk g-C3N4precursor with an alkaline salt (LiN(SiMe3)2) with a low melting point, moderate nucleophilicity, and easy removal procedures. The unique structural properties of the afforded ND-g-C3N4allow for a significantly redshifted absorption edge and enhanced charge carrier separation, leading to superior photocatalytic hydrogen evolution performance three times that obtained by pristine g-C3N4. The modification strategy developed herein sheds light on the fabrication of g-C3N4-based materials with improved photocatalytic efficiencyviaefficient introduction of N defects, variation of the surface structure, and retention of the high crystallinity.

Original languageEnglish
Pages (from-to)4700-4706
Number of pages7
JournalJournal of Materials Chemistry A
Volume9
Issue number8
DOIs
StatePublished - Feb 28 2021

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry 2021.

Fingerprint

Dive into the research topics of 'Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency'. Together they form a unique fingerprint.

Cite this