Abstract
Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors. Here, we demonstrate that heterologous expression of the REVEILLE1 gene (named AaRVE1) from Agave (Agave americana) not only delays the onset of bud dormancy but also accelerates bud break in poplar in field trials. AaRVE1 heterologous expression increases poplar biomass yield by 166% in the greenhouse. Furthermore, we reveal that heterologous expression of AaRVE1 increases cytokinin contents, represses multiple dormancy-related genes, and up-regulates bud break-related genes, and that AaRVE1 functions as a transcriptional repressor and regulates the activity of the DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) promoter. Our findings demonstrate that AaRVE1 appears to function as a regulator of bud dormancy and bud break, which has important implications for extending the growing season of deciduous trees in frost-free temperate and subtropical regions to increase crop yield.
Original language | English |
---|---|
Pages (from-to) | 1492-1504 |
Number of pages | 13 |
Journal | Plant Physiology |
Volume | 191 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2023 |
Funding
This research is supported by the Department of Energy (DOE), Office of Science, Genomic Science Program under Award Number DE-SC0008834, and the Center for Bioenergy Innovation (CBI), which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US DOE under Contract Number DE-AC05-00OR22725. Meng Xie and Dimiru Tadesse are supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research, as part of the Quantitative Plant Science Initiative (QPSI) at Brookhaven National Laboratory. The work (proposal: 10.46936/10.25585/ 60000780) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. DOE operated under Contract No. DE-AC02-05CH11231.