Abstract
A set of standardized and realistic aftertreatment catalyst test protocols have been developed by the Advanced Combustion and Emission Control Technical Team in support of the U.S. DRIVE Partnership. The protocols are intended to accelerate the pace of aftertreatment catalyst innovation by enabling the accurate evaluation and comparison of aftertreatment catalyst performance data from various testing and research facilities to maximize the impact of discovery-phase research occurring across the nation. The protocols address a need identified by the Partnership’s industry partners for consistent and accurate metrics for aftertreatment catalyst evaluation and comparison. The protocols consist of a set of standardized requirements and test procedures that sufficiently capture the performance capability of a catalyst technology in a manner that is adaptable in various laboratories. The protocols provide a detailed description of the necessary reactor system, the steps for achieving a desired aged state of the catalyst, all necessary sample pretreatments to be performed prior to testing, and realistic test conditions for evaluating performance. This article details four low-temperature catalyst test protocols applicable to (1) oxidation catalysts, (2) passive storage (and release) catalysts, (3) three-way catalysts, and (4) NH 3 -SCR catalysts. The catalyst test protocol descriptions are presented in five (5) sections: protocol general guidelines and the four individual catalyst test protocol descriptions. The general guidelines plus the individual protocol description forms the complete low-temperature catalyst test protocol for the application.
Original language | English |
---|---|
Pages (from-to) | 183-214 |
Number of pages | 32 |
Journal | Emission Control Science and Technology |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - Jun 15 2019 |
Funding
The authors gratefully acknowledge the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office, and the U.S. Council for Automotive Research LLC (USCAR) for the support of this work. USCAR is a collaborative automotive technology company for FCA, Ford, and GM. The Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. The Oak Ridge National Laboratory (ORNL) is operated for the U.S. DOE by UT-Battelle. The low-temperature catalyst test protocols are a product of the Advanced Combustion and Emission Control (ACEC) Technical Team, one of 10 U.S. DRIVE technical teams. Contributions from Michelle Wiebenga (GM), D. William Brookshear (ORNL), and Chang Yup Seo (University of Michigan) are greatly appreciated for collection of the round-robin test results. Acknowledgements The authors gratefully acknowledge the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office, and the U.S. Council for Automotive Research LLC (USCAR) for the support of this work. USCAR is a collaborative automotive technology company for FCA, Ford, and GM. The Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. The Oak Ridge National Laboratory (ORNL) is operated for the U.S. DOE by UT-Battelle. The low-temperature catalyst test protocols are a product of the Advanced Combustion and Emission Control (ACEC) Technical Team, one of 10 U.S. DRIVE technical teams. Contributions from Michelle Wiebenga (GM), D. William Brookshear (ORNL), and Chang Yup Seo (University of Michigan) are greatly appreciated for collection of the round-robin test results.
Funders | Funder number |
---|---|
DRIVE | |
U.S. Council for Automotive Research LLC | |
USCAR | |
UT-Battelle | |
U.S. Department of Energy | |
Battelle | |
Office of Energy Efficiency and Renewable Energy | |
Oak Ridge National Laboratory | ORNL |
University of Michigan | |
Pacific Northwest National Laboratory | PNNL |
Vehicle Technologies Office | |
Foundation for Contemporary Arts | GM |
Keywords
- Emission control
- Hydrocarbon trap
- Oxidation
- Passive NOx adsorber
- Selective catalytic reduction
- Three-way catalyst