TY - GEN
T1 - Aerodynamic analysis of a high maneuverability airframe utilizing magnetic resonance velocimetry and reynolds-averaged navier-stokes simulations
AU - Youn, Eric
AU - Waugh, Alexander
AU - Livingston, Zachary
AU - Benson, Michael
AU - Van Poppel, Bret
AU - VerHulst, Claire
AU - Ol, Michael
AU - Medina, Albert
AU - Silton, Sidra
AU - Elkins, Christopher
N1 - Publisher Copyright:
© 2017, American Institute of Aeronautics and Astronautics Inc. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Experiments in water-facilities were conducted on a geometrically scaled, 81-mm diameter, fin-stabilized projectile, to validate numerical simulations. Experiments in a water channel (Stanford) used magnetic resonance velocimetry (MRV) to obtain fully 3D velocity measurements to observe and measure canard tip vortices interacting with the projectile’s tail-fins. Canards were deflected to 2° in a roll configuration. Experiments in the water tunnel (AFRL) were conventional force/moment and flow visualization, using a larger facility with lower blockage. Canards were deflected to 2° in a roll and pitch configuration in addition to the non-deflected case. The force and moment data were collected over a large range of angles of attack, while the MRV model only considered angles of attack of 0 and 2 degrees due to geometric limitations. Reynolds-Averaged Navier-Stokes (RANS) simulations produced similar results to those of the MRV. The MRV, flow visualization, and RANS results indicate that the HMA at 2° canard deflection and 2° projectile angle of attack causes significant tip vortex formation, which reaches the leading edge of the fins, which has previously been shown to cause degradation in projectile controllability.
AB - Experiments in water-facilities were conducted on a geometrically scaled, 81-mm diameter, fin-stabilized projectile, to validate numerical simulations. Experiments in a water channel (Stanford) used magnetic resonance velocimetry (MRV) to obtain fully 3D velocity measurements to observe and measure canard tip vortices interacting with the projectile’s tail-fins. Canards were deflected to 2° in a roll configuration. Experiments in the water tunnel (AFRL) were conventional force/moment and flow visualization, using a larger facility with lower blockage. Canards were deflected to 2° in a roll and pitch configuration in addition to the non-deflected case. The force and moment data were collected over a large range of angles of attack, while the MRV model only considered angles of attack of 0 and 2 degrees due to geometric limitations. Reynolds-Averaged Navier-Stokes (RANS) simulations produced similar results to those of the MRV. The MRV, flow visualization, and RANS results indicate that the HMA at 2° canard deflection and 2° projectile angle of attack causes significant tip vortex formation, which reaches the leading edge of the fins, which has previously been shown to cause degradation in projectile controllability.
UR - http://www.scopus.com/inward/record.url?scp=85017280392&partnerID=8YFLogxK
U2 - 10.2514/6.2017-1662
DO - 10.2514/6.2017-1662
M3 - Conference contribution
AN - SCOPUS:85017280392
T3 - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
BT - AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc.
T2 - 55th AIAA Aerospace Sciences Meeting
Y2 - 9 January 2017 through 13 January 2017
ER -