Aerodynamic analysis of a high maneuverability airframe utilizing magnetic resonance velocimetry and reynolds-averaged navier-stokes simulations

Eric Youn, Alexander Waugh, Zachary Livingston, Michael Benson, Bret Van Poppel, Claire VerHulst, Michael Ol, Albert Medina, Sidra Silton, Christopher Elkins

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Experiments in water-facilities were conducted on a geometrically scaled, 81-mm diameter, fin-stabilized projectile, to validate numerical simulations. Experiments in a water channel (Stanford) used magnetic resonance velocimetry (MRV) to obtain fully 3D velocity measurements to observe and measure canard tip vortices interacting with the projectile’s tail-fins. Canards were deflected to 2° in a roll configuration. Experiments in the water tunnel (AFRL) were conventional force/moment and flow visualization, using a larger facility with lower blockage. Canards were deflected to 2° in a roll and pitch configuration in addition to the non-deflected case. The force and moment data were collected over a large range of angles of attack, while the MRV model only considered angles of attack of 0 and 2 degrees due to geometric limitations. Reynolds-Averaged Navier-Stokes (RANS) simulations produced similar results to those of the MRV. The MRV, flow visualization, and RANS results indicate that the HMA at 2° canard deflection and 2° projectile angle of attack causes significant tip vortex formation, which reaches the leading edge of the fins, which has previously been shown to cause degradation in projectile controllability.

Original languageEnglish
Title of host publicationAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624104473
DOIs
StatePublished - 2017
Externally publishedYes
Event55th AIAA Aerospace Sciences Meeting - Grapevine, United States
Duration: Jan 9 2017Jan 13 2017

Publication series

NameAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Conference

Conference55th AIAA Aerospace Sciences Meeting
Country/TerritoryUnited States
CityGrapevine
Period01/9/1701/13/17

Fingerprint

Dive into the research topics of 'Aerodynamic analysis of a high maneuverability airframe utilizing magnetic resonance velocimetry and reynolds-averaged navier-stokes simulations'. Together they form a unique fingerprint.

Cite this