Abstract
In the last decade, the unprecedented simplicity and flexibility of the CRISPR-Cas system has made it the dominant transformative tool in gene and genome editing. However, this democratized technology is both a boon and a bane, for which we have yet to understand the full potential to investigate and rewrite genomes (also named “genome biodesign”). Rapid CRISPR advances in a range of applications in basic research, agriculture, and clinical applications pose new risks and raise several biosecurity concerns. In such a fast-moving field of research, we emphasize the importance of properly communicating the quality and accuracy of results and recommend new reporting requirements for results derived from next-generation genome engineering.
Original language | English |
---|---|
Article number | 9429650 |
Journal | BioDesign Research |
Volume | 2020 |
DOIs | |
State | Published - 2020 |
Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER) and the Genomic Sciences Program as a part of the Secure Biosystems Design program. The manuscript has been authored by UT-Battelle, LLC, under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. This manuscript has been authored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Biological and Environmental Research | DE-AC05-00OR22725 |