TY - GEN
T1 - Advanced manufacturing for nuclear core design
AU - Betzler, B. R.
AU - Ade, B. J.
AU - Wysocki, A. J.
AU - Greenwood, M. S.
AU - Heineman, J. J.W.
AU - Chesser, P. C.
AU - Jain, P. K.
AU - Heidet, F.
AU - Bergeron, A.
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
PY - 2020
Y1 - 2020
N2 - Advanced manufacturing has the potential to revitalize US manufacturing, with valuable applications in several industries, including aerospace, automotive, and construction. Some of these applications have clear-cut objectives (e.g., maintain component performance while reducing mass). Applications of advanced manufacturing of nuclear components have aimed at recapturing lost manufacturing capabilities or addressing maintenance of legacy reactor components. Through the Department of Energy, Office of Nuclear Energy, Transformational Challenge Reactor design and analysis thrust, applications of advanced manufacturing, in particular, additive manufacturing, to core design has yielded reactor designs that are free from conventional manufacturing constraints. For applications in core design, the multiphysics nature of the key core metrics (e.g., peak temperature, peak power) in addition to transient safety performance requirements provides a more complex set of objectives that requires more advanced modeling and simulation tools. Additive manufacturing provides high dimensional control and design flexibility to produce complex coolant channel shapes for improved heat transfer properties and low peak material temperatures. Additional mechanisms for improved heat transfer characteristics and temperature-controlled feedback mechanisms have also been explored and incorporated into designs. While some of these enhancements are not directly beneficial for the current operating pressurized water reactor fleet, benefits may be realized in specific reactor applications that have a more constrained design space (e.g., mass, size, material type) or design metrics (e.g., fuel utilization).
AB - Advanced manufacturing has the potential to revitalize US manufacturing, with valuable applications in several industries, including aerospace, automotive, and construction. Some of these applications have clear-cut objectives (e.g., maintain component performance while reducing mass). Applications of advanced manufacturing of nuclear components have aimed at recapturing lost manufacturing capabilities or addressing maintenance of legacy reactor components. Through the Department of Energy, Office of Nuclear Energy, Transformational Challenge Reactor design and analysis thrust, applications of advanced manufacturing, in particular, additive manufacturing, to core design has yielded reactor designs that are free from conventional manufacturing constraints. For applications in core design, the multiphysics nature of the key core metrics (e.g., peak temperature, peak power) in addition to transient safety performance requirements provides a more complex set of objectives that requires more advanced modeling and simulation tools. Additive manufacturing provides high dimensional control and design flexibility to produce complex coolant channel shapes for improved heat transfer properties and low peak material temperatures. Additional mechanisms for improved heat transfer characteristics and temperature-controlled feedback mechanisms have also been explored and incorporated into designs. While some of these enhancements are not directly beneficial for the current operating pressurized water reactor fleet, benefits may be realized in specific reactor applications that have a more constrained design space (e.g., mass, size, material type) or design metrics (e.g., fuel utilization).
KW - Additive manufacturing
KW - Advanced manufacturing
KW - Core design
UR - http://www.scopus.com/inward/record.url?scp=85092133000&partnerID=8YFLogxK
U2 - 10.1051/epjconf/202124701011
DO - 10.1051/epjconf/202124701011
M3 - Conference contribution
AN - SCOPUS:85092133000
T3 - International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
SP - 97
EP - 104
BT - International Conference on Physics of Reactors
A2 - Margulis, Marat
A2 - Blaise, Partrick
PB - EDP Sciences - Web of Conferences
T2 - 2020 International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
Y2 - 28 March 2020 through 2 April 2020
ER -