Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide

Filchito Renee Bagsican, Andrew Winchester, Sujoy Ghosh, Xiang Zhang, Lulu Ma, Minjie Wang, Hironaru Murakami, Saikat Talapatra, Robert Vajtai, Pulickel M. Ajayan, Junichiro Kono, Masayoshi Tonouchi, Iwao Kawayama

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Adsorption of gas molecules on the surface of atomically layered two-dimensional (2D) materials, including graphene and transition metal dichalcogenides, can significantly affect their electrical and optical properties. Therefore, a microscopic and quantitative understanding of the mechanism and dynamics of molecular adsorption and desorption has to be achieved in order to advance device applications based on these materials. However, recent theoretical calculations have yielded contradictory results, particularly on the magnitude of the adsorption energy. Here, we have experimentally determined the adsorption energy of oxygen molecules on graphene and 2D tungsten disulfide using temperature-programmed terahertz (THz) emission microscopy (TPTEM). The temperature dependence of THz emission from InP surfaces covered with 2D materials reflects the change in oxygen concentration due to thermal desorption, which we used to estimate the adsorption energy of oxygen molecules on graphene (~0.15 eV) and tungsten disulphide (~0.24 eV). Furthermore, we used TPTEM to visualize relative changes in the spatial distribution of oxygen molecules on monolayer graphene during adsorption and desorption. Our results provide much insight into the mechanism of molecular adsorption on the surface of 2D materials, while introducing TPTEM as a novel and powerful tool for molecular surface science.

Original languageEnglish
Article number1774
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

Funding

This work is partially supported by JSPS KAKENHI Grant Numbers JP25630149 and JP26107524, Air Force Office of Scientific Research (Grant Numbers FA9550-14-1-0268 and FA2386-15-1-0004), and Program for Promoting International Joint Research, Osaka University. Partial funding support through US Army Research Office MURI grant #W911NF-11-1-0362, US National Science Foundation (NSF) through grant #NSF-PIRE OISE-0968405, the Robert A. Welch Foundation through Grant No. C-1509, and JSPS Core-to-Core Program, A. Advanced Research Networks is also acknowledged.

Fingerprint

Dive into the research topics of 'Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide'. Together they form a unique fingerprint.

Cite this