Abstract
Since the discovery of strong metal-support interactions (SMSIs) over supported metal catalysts in the 1970s, researchers have studied ways to harness this type of catalyst reconstruction to achieve enhanced stability of metal particles against sintering and to create catalytic sites with novel electronic and bonding properties. The motivation to elucidate performance-structure relationships in catalytic transformations has led researchers to take a closer look into catalytic surfaces under reaction conditions rather than a postreaction analysis. These investigations of operating catalysts have made it clear that SMSIs are more common than initially thought. Recent reports show how various adsorbed species, rather than traditional H2/O2 treatment, can promote SMSI in various catalytic systems, a phenomenon named adsorbate-induced SMSI (A-SMSI). Researching the occurrence of A-SMSI has allowed fundamental understanding of catalyst stability, catalytic rates, and product selectivity. The present Perspective discusses the state-of-the-art regarding A-SMSI, the current challenges, and the opportunities ahead in heterogeneous catalysis.
Original language | English |
---|---|
Pages (from-to) | 524-534 |
Number of pages | 11 |
Journal | Journal of Physical Chemistry Letters |
Volume | 14 |
Issue number | 2 |
DOIs | |
State | Published - Jan 19 2023 |
Funding
This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science program. Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science program. Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Funders | Funder number |
---|---|
DOE Public Access Plan | |
United States Government | |
U.S. Department of Energy | |
Office of Science | |
Basic Energy Sciences | DE-AC05-00OR22725 |