Abstract
We present Adrastea, an efficient FPGA design environment for developing scientific machine learning applications. FPGA development is challenging, from deployment, proper toolchain setup, programming methods, interfacing FPGA kernels, and more importantly, the need to explore design space choices to get the best performance and area usage from the FPGA kernel design. Adrastea provides an automated and scalable design flow to parameterize, implement, and optimize complex FPGA kernels and associated interfaces. We show how virtualization of the development environment via virtual machines is leveraged to simplify the setup of the FPGA toolchain while deploying the FPGA boards and while scaling up the automated design space exploration to leverage multiple machines concurrently. Adrastea provides an automated build and test environment of FPGA kernels. By exposing design space hyper-parameters, Adrastea can automatically search the design space in parallel to optimize the FPGA design for a given metric, usually performance or area. Adrastea simplifies the task of interfacing with the FPGA kernels with a simplified interface API. To demonstrate the capabilities of Adrastea, we implement a complex random forest machine learning kernel with 10,000 input features while achieving extremely low computing latency without loss of prediction accuracy, which is required by a scientific edge application at SNS. We also demonstrate Adrastea using an FFT kernel and show that for both applications Adrastea is able to systematically and efficiently evaluate different design options, which reduced the time and effort required to develop the kernel from months of manual work to days of automatic builds.
Original language | English |
---|---|
Title of host publication | Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation - 22nd Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022, Revised Selected Papers |
Editors | Kothe Doug, Geist Al, Swaroop Pophale, Hong Liu, Suzanne Parete-Koon |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 227-243 |
Number of pages | 17 |
ISBN (Print) | 9783031236051 |
DOIs | |
State | Published - 2022 |
Event | Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022 - Virtual, Online Duration: Aug 24 2022 → Aug 25 2022 |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Volume | 1690 CCIS |
ISSN (Print) | 1865-0929 |
ISSN (Electronic) | 1865-0937 |
Conference
Conference | Smoky Mountains Computational Sciences and Engineering Conference, SMC 2022 |
---|---|
City | Virtual, Online |
Period | 08/24/22 → 08/25/22 |
Funding
Acknowledgments. This research used resources of the Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725
Keywords
- Design space exploration
- FPGA development environment
- Heterogeneous computing
- Machine learning
- Scientific computing