Adiabatic quantum linear regression

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

A major challenge in machine learning is the computational expense of training these models. Model training can be viewed as a form of optimization used to fit a machine learning model to a set of data, which can take up significant amount of time on classical computers. Adiabatic quantum computers have been shown to excel at solving optimization problems, and therefore, we believe, present a promising alternative to improve machine learning training times. In this paper, we present an adiabatic quantum computing approach for training a linear regression model. In order to do this, we formulate the regression problem as a quadratic unconstrained binary optimization (QUBO) problem. We analyze our quantum approach theoretically, test it on the D-Wave adiabatic quantum computer and compare its performance to a classical approach that uses the Scikit-learn library in Python. Our analysis shows that the quantum approach attains up to 2.8 × speedup over the classical approach on larger datasets, and performs at par with the classical approach on the regression error metric. The quantum approach used the D-Wave 2000Q adiabatic quantum computer, whereas the classical approach used a desktop workstation with an 8-core Intel i9 processor. As such, the results obtained in this work must be interpreted within the context of the specific hardware and software implementations of these machines.

Original languageEnglish
Article number21905
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Funding

This manuscript has been authored in part by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/ doe-public-access-plan). This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This work was funded in part by the DOE Office of Science, High-energy Physics Quantised program. This work was funded in part by the DOE Office of Science, Advanced Scientific Computing Research (ASCR) program.

FundersFunder number
U.S. Department of Energy
Office of Science
Advanced Scientific Computing Research
Savannah River Operations Office, U.S. Department of Energy
Idaho Operations Office, U.S. Department of Energy

    Fingerprint

    Dive into the research topics of 'Adiabatic quantum linear regression'. Together they form a unique fingerprint.

    Cite this