Additively Manufactured Intensified Device for Enhanced Carbon Capture

Costas Tsouris, Eduardo Miramontes, Canhai Lai, Lonnie Love, Xin Sun

Research output: Book/ReportCommissioned report

Abstract

Additively manufactured packed bed devices for the enhancement of carbon capture were successfully developed, built, characterized, and tested in this project. The objective was to demonstrate that in situ cooling of chemical absorption could have beneficial effects on the absorption rate of CO2. This was achieved in two stages, divided between FY 2018 and FY 2019. First, the feasibility of printing conventional packing elements was investigated, and the core hydrodynamic metrics were experimentally validated. The data obtained in those studies informed the operating conditions set for the next stage, which was to validate the efficacy of in situ cooling provided by an additively manufactured packed bed element, referred to as the intensified device. The intensified device is designed to enable heat exchange between an internally flowing coolant and the gas-liquid system flowing on the external corrugated surface of the packing. Polymer and metal were both considered as the base materials for the device, and comparative studies on hydrodynamic properties were performed. These considerations, as well as thermal properties and leak tests led to aluminum being chosen as the base material for experimental validation of capture enhancement. The experimental validation was first conducted under non-reactive conditions, and after establishing heat-exchange capabilities, was subsequently conducted under reactive conditions. These studies demonstrated that in situ cooling can benefit absorption given the appropriate operating conditions.
Original languageEnglish
Place of PublicationUnited States
DOIs
StatePublished - 2019

Keywords

  • 54 ENVIRONMENTAL SCIENCES
  • 42 ENGINEERING
  • 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Fingerprint

Dive into the research topics of 'Additively Manufactured Intensified Device for Enhanced Carbon Capture'. Together they form a unique fingerprint.

Cite this