TY - GEN
T1 - Additive manufacture of prototype turbine blades for hot-fired engine performance validation trials
AU - Adair, David
AU - Kirka, Michael
AU - Ryan, Daniel
N1 - Publisher Copyright:
Copyright © 2019 ASME and Solar Turbines Incorporated.
PY - 2019
Y1 - 2019
N2 - Additive manufacturing (AM), also known as 3D printing, is a rapidly developing technology with tremendous potential in both developmental and production applications. Solar Turbines Incorporated is committed to AM technology for gas turbine applications. The ability to metal 3D print novel designs of turbine blades capable of actual turbine engine operation would effectively reduce design validation cycle time, and allow acquisition of key performance data early in a design campaign. In support of Solar’s advanced manufacturing development and ongoing engine efficiency improvement goals, Solar initiated a project to print a full set of Mercury™ 50 stage 2 turbine blades to be run in a development engine. Solar leveraged years of experience with design and serial production of AM components in support of this project. A significant challenge faced when printing turbine blades is producing metal with mechanical properties sufficient to withstand the rigors of engine operation. As a rotating component within the hot section of the engine, turbine blades experience high centrifugal and pressure loads at elevated temperatures. After investigation of possible alloys capable of meeting the requirements of the Mercury™ 50 design envelope, the gamma prime (γ’) strengthened nickel superalloy Inconel 738LC was selected to provide the best opportunity for successful development engine testing. Solar partnered with Oak Ridge National Laboratory (ORNL) to produce the Inconel™ 738LC blades with Electron Beam Melting (EBM) powder bed fusion process. Once a rough blade shape was printed, the fir-tree attachment, blade tip shroud, and air flow path surfaces were finished using both conventional and non-conventional machining processes. In-process monitoring, metallurgical evaluations, mechanical testing, and non-destructive inspection techniques were used to validate the printed blade material integrity and conformance to geometric design intent. Planned future activities include assembly of the AM blades onto a disk for spin pit testing to validate the mechanical integrity and design margin of the blades. The final phase of the project will be to install the bladed disk assembly into a Mercury™ 50 engine at Solar Turbines to conduct a series of hot-fired engine performance tests.
AB - Additive manufacturing (AM), also known as 3D printing, is a rapidly developing technology with tremendous potential in both developmental and production applications. Solar Turbines Incorporated is committed to AM technology for gas turbine applications. The ability to metal 3D print novel designs of turbine blades capable of actual turbine engine operation would effectively reduce design validation cycle time, and allow acquisition of key performance data early in a design campaign. In support of Solar’s advanced manufacturing development and ongoing engine efficiency improvement goals, Solar initiated a project to print a full set of Mercury™ 50 stage 2 turbine blades to be run in a development engine. Solar leveraged years of experience with design and serial production of AM components in support of this project. A significant challenge faced when printing turbine blades is producing metal with mechanical properties sufficient to withstand the rigors of engine operation. As a rotating component within the hot section of the engine, turbine blades experience high centrifugal and pressure loads at elevated temperatures. After investigation of possible alloys capable of meeting the requirements of the Mercury™ 50 design envelope, the gamma prime (γ’) strengthened nickel superalloy Inconel 738LC was selected to provide the best opportunity for successful development engine testing. Solar partnered with Oak Ridge National Laboratory (ORNL) to produce the Inconel™ 738LC blades with Electron Beam Melting (EBM) powder bed fusion process. Once a rough blade shape was printed, the fir-tree attachment, blade tip shroud, and air flow path surfaces were finished using both conventional and non-conventional machining processes. In-process monitoring, metallurgical evaluations, mechanical testing, and non-destructive inspection techniques were used to validate the printed blade material integrity and conformance to geometric design intent. Planned future activities include assembly of the AM blades onto a disk for spin pit testing to validate the mechanical integrity and design margin of the blades. The final phase of the project will be to install the bladed disk assembly into a Mercury™ 50 engine at Solar Turbines to conduct a series of hot-fired engine performance tests.
UR - http://www.scopus.com/inward/record.url?scp=85075526883&partnerID=8YFLogxK
U2 - 10.1115/GT2019-90966
DO - 10.1115/GT2019-90966
M3 - Conference contribution
AN - SCOPUS:85075526883
T3 - Proceedings of the ASME Turbo Expo
BT - Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -