Abstract
Poly (ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into higher-value products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism. Three P. putida strains with varying degrees of metabolic engineering for EG catabolism underwent an automation-enabled ALE campaign on TPA, a TPA and EG mixture, and glucose as a control. ALE increased the growth rate on TPA and TPA-EG mixtures by 4.1- and 3.5-fold, respectively, in approximately 350 generations. Evolved isolates were collected at the midpoints and endpoints of 39 independent ALE experiments, and growth rates were increased by 0.15 and 0.20 h−1 on TPA and a TPA-EG, respectively, in the best performing isolates. Whole-genome re-sequencing identified multiple converged mutations, including loss-of-function mutations to global regulators gacS, gacA, and turA along with large duplication and intergenic deletion events that impacted the heterologously-expressed tphABII catabolic genes. Reverse engineering of these targets confirmed causality, and a strain with all three regulators deleted and second copies of tphABII and tpaK displayed improved TPA utilization compared to the base strain. Taken together, an iterative strain engineering process involving heterologous pathway engineering, ALE, whole genome sequencing, and genome editing identified five genetic interventions that improve P. putida growth on TPA, aimed at developing enhanced whole-cell biocatalysts for PET upcycling.
Original language | English |
---|---|
Pages (from-to) | 196-205 |
Number of pages | 10 |
Journal | Metabolic Engineering |
Volume | 88 |
DOIs | |
State | Published - Mar 2025 |
Funding
NREL and ORNL authors were supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office (AMMTO) and Bioenergy Technologies Office (BETO). This work was performed as part of the Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium and was supported by AMMTO and BETO under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC. This work was authored, in part, by Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the US Department of Energy (DOE) under contract DE-AC05-00OR22725. We would also like to acknowledge the Novo Nordisk Foundation (Grant number NNF20CC0035580) for funding for the project. We acknowledge Riccardo Rossi for technical assistance related to mutational analysis.
Keywords
- Plastics upcycling
- Terephthalate
- poly(ethylene terephthalate)