Abstract
In this study, a phase fault detection algorithm is developed by employing the envelope detector method. The proposed method diagnoses faults among phases and defines fault areas in the incoming signal. The designed algorithm consists of three steps: analytical signal conversion, complex magnitude, and fault detection. Initially, an analytical signal is obtained from the incoming power signal to determine the instantaneous amplitude and phase of the signal. A complex magnitude operation is applied to analytical signals to display changes in amplitude. On the basis of the threshold values specified by the user, the last step identifies the distortion signal in terms of the type of error and size. The proposed method is tested with realistically simulated substation power signal data and real power system data from the Grid Event Signature Library. The obtained results revealed that the proposed method detects distortions accurately.
Original language | English |
---|---|
Title of host publication | 2023 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 247-252 |
Number of pages | 6 |
ISBN (Electronic) | 9798350337822 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2023 - Istanbul, Turkey Duration: Jul 4 2023 → Jul 7 2023 |
Publication series
Name | 2023 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2023 |
---|
Conference
Conference | 2023 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2023 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 07/4/23 → 07/7/23 |
Funding
This manuscript has been authored by UT–Battelle, LLC, under contract DE–AC05–00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- Envelope detector
- fault detection
- phase fault
- smart grid systems