Adaptive Anomaly Detection for Dynamic Clinical Event Sequences

Haoran Niu, Olufemi A. Omitaomu, Qing C. Cao, Mohammad Olama, Ozgur Ozmen, Hilda Klasky, Laura Pullum, Addi Thakur Malviya, Teja Kuruganti, Jeanie Scott, Angela Laurio, Frank Drews, Brian Sauer, Merry Ward, Jonathan Nebeker

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Over the past decade, health information technology (IT) has enabled the amount of digital information stored in electronic health records (EHRs) to expand greatly. However, according to some studies, hazards in health IT can lead to changes in clinical decisions, care processes, and care outcomes, as well as other issues. Thus, the effects of health IT hazards on patient safety have been at the forefront of recent patient safety research. Nonetheless, hazard detection in health IT remains a challenge. In this paper, the authors assume that safety-related issues in health IT would exhibit anomalous characteristics in EHR data. Although all hazards will exhibit some anomalous characteristics, not all anomalies can be regarded as hazards. The authors hypothesize that errors in health IT could lead to interruptions in the sequence of clinical actions. To this end, the problem of detecting anomalous sequences in big EHR data is considered. This paper focuses on dynamic event sequences, which are a series of clinical actions in motion. The authors propose an adaptive anomaly detection approach that uses higher-order network representation to detect anomalous sequences. Furthermore, the authors propose a contiguous subsequence anomaly detection approach that identifies abnormal subsequences in the detected anomalous sequences. The proposed approaches are tested by using synthetic and real-world EHR data. The proposed methods outperform existing state of the art anomaly detection techniques. To reduce the computational complexity associated with the operational implementation of the proposed approaches, the Apache Spark environment was leveraged, and a much shorter run time together with improved performance were achieved, especially for data with more than 60,000 sequences.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
EditorsXintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4919-4928
Number of pages10
ISBN (Electronic)9781728162515
DOIs
StatePublished - Dec 10 2020
Externally publishedYes
Event8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States
Duration: Dec 10 2020Dec 13 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020

Conference

Conference8th IEEE International Conference on Big Data, Big Data 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period12/10/2012/13/20

Funding

This work is sponsored by the US Department of Veterans Affairs. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy
U.S. Department of Veterans AffairsDE-AC05-00OR22725

    Keywords

    • anomaly detection
    • clinic decision support
    • electronic health records
    • health information technologies
    • higher-order networks

    Fingerprint

    Dive into the research topics of 'Adaptive Anomaly Detection for Dynamic Clinical Event Sequences'. Together they form a unique fingerprint.

    Cite this