TY - GEN
T1 - Adaptive Anomaly Detection for Dynamic Clinical Event Sequences
AU - Niu, Haoran
AU - Omitaomu, Olufemi A.
AU - Cao, Qing C.
AU - Olama, Mohammad
AU - Ozmen, Ozgur
AU - Klasky, Hilda
AU - Pullum, Laura
AU - Malviya, Addi Thakur
AU - Kuruganti, Teja
AU - Scott, Jeanie
AU - Laurio, Angela
AU - Drews, Frank
AU - Sauer, Brian
AU - Ward, Merry
AU - Nebeker, Jonathan
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12/10
Y1 - 2020/12/10
N2 - Over the past decade, health information technology (IT) has enabled the amount of digital information stored in electronic health records (EHRs) to expand greatly. However, according to some studies, hazards in health IT can lead to changes in clinical decisions, care processes, and care outcomes, as well as other issues. Thus, the effects of health IT hazards on patient safety have been at the forefront of recent patient safety research. Nonetheless, hazard detection in health IT remains a challenge. In this paper, the authors assume that safety-related issues in health IT would exhibit anomalous characteristics in EHR data. Although all hazards will exhibit some anomalous characteristics, not all anomalies can be regarded as hazards. The authors hypothesize that errors in health IT could lead to interruptions in the sequence of clinical actions. To this end, the problem of detecting anomalous sequences in big EHR data is considered. This paper focuses on dynamic event sequences, which are a series of clinical actions in motion. The authors propose an adaptive anomaly detection approach that uses higher-order network representation to detect anomalous sequences. Furthermore, the authors propose a contiguous subsequence anomaly detection approach that identifies abnormal subsequences in the detected anomalous sequences. The proposed approaches are tested by using synthetic and real-world EHR data. The proposed methods outperform existing state of the art anomaly detection techniques. To reduce the computational complexity associated with the operational implementation of the proposed approaches, the Apache Spark environment was leveraged, and a much shorter run time together with improved performance were achieved, especially for data with more than 60,000 sequences.
AB - Over the past decade, health information technology (IT) has enabled the amount of digital information stored in electronic health records (EHRs) to expand greatly. However, according to some studies, hazards in health IT can lead to changes in clinical decisions, care processes, and care outcomes, as well as other issues. Thus, the effects of health IT hazards on patient safety have been at the forefront of recent patient safety research. Nonetheless, hazard detection in health IT remains a challenge. In this paper, the authors assume that safety-related issues in health IT would exhibit anomalous characteristics in EHR data. Although all hazards will exhibit some anomalous characteristics, not all anomalies can be regarded as hazards. The authors hypothesize that errors in health IT could lead to interruptions in the sequence of clinical actions. To this end, the problem of detecting anomalous sequences in big EHR data is considered. This paper focuses on dynamic event sequences, which are a series of clinical actions in motion. The authors propose an adaptive anomaly detection approach that uses higher-order network representation to detect anomalous sequences. Furthermore, the authors propose a contiguous subsequence anomaly detection approach that identifies abnormal subsequences in the detected anomalous sequences. The proposed approaches are tested by using synthetic and real-world EHR data. The proposed methods outperform existing state of the art anomaly detection techniques. To reduce the computational complexity associated with the operational implementation of the proposed approaches, the Apache Spark environment was leveraged, and a much shorter run time together with improved performance were achieved, especially for data with more than 60,000 sequences.
KW - anomaly detection
KW - clinic decision support
KW - electronic health records
KW - health information technologies
KW - higher-order networks
UR - http://www.scopus.com/inward/record.url?scp=85103818847&partnerID=8YFLogxK
U2 - 10.1109/BigData50022.2020.9378080
DO - 10.1109/BigData50022.2020.9378080
M3 - Conference contribution
AN - SCOPUS:85103818847
T3 - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
SP - 4919
EP - 4928
BT - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
A2 - Wu, Xintao
A2 - Jermaine, Chris
A2 - Xiong, Li
A2 - Hu, Xiaohua Tony
A2 - Kotevska, Olivera
A2 - Lu, Siyuan
A2 - Xu, Weijia
A2 - Aluru, Srinivas
A2 - Zhai, Chengxiang
A2 - Al-Masri, Eyhab
A2 - Chen, Zhiyuan
A2 - Saltz, Jeff
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th IEEE International Conference on Big Data, Big Data 2020
Y2 - 10 December 2020 through 13 December 2020
ER -