TY - GEN
T1 - Active manifolds
T2 - 36th International Conference on Machine Learning, ICML 2019
AU - Bridges, Robert A.
AU - Gruber, Anthony D.
AU - Felder, Christopher R.
AU - Verma, Miki E.
AU - Hoff, Chelsey
N1 - Publisher Copyright:
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.
PY - 2019
Y1 - 2019
N2 - We present an approach to analyze C1(ℝm) functions that addresses limitations present in the Active Subspaces (AS) method of Constantine et al. (2015; 2014). Under appropriate hypotheses, our Active Manifolds (AM) method identifies a 1-D curve in the domain (the active manifold) on which nearly all values of the unknown function are attained, and which can be exploited for approximation or analysis, especially when m is large (high-dimensional input space). We provide theorems justifying our AM technique and an algorithm permitting functional approximation and sensitivity analysis. Using accessible, low-dimensional functions as initial examples, we show AM reduces approximation error by an order of magnitude compared to AS, at the expense of more computation. Following this, we revisit the sensitivity analysis by Glaws et al. (2017), who apply AS to analyze a magnetohydrodynamic power generator model, and compare the performance of AM on the same data. Our analysis provides detailed information not captured by AS, exhibiting the influence of each parameter individually along an active manifold. Overall, AM represents a novel technique for analyzing functional models with benefits including: reducing m-dimensional analysis to a 1-D analogue, permitting more accurate regression than AS (at more computational expense), enabling more informative sensitivity analysis, and granting accessible visualizations (2-D plots) of parameter sensitivity along the AM.
AB - We present an approach to analyze C1(ℝm) functions that addresses limitations present in the Active Subspaces (AS) method of Constantine et al. (2015; 2014). Under appropriate hypotheses, our Active Manifolds (AM) method identifies a 1-D curve in the domain (the active manifold) on which nearly all values of the unknown function are attained, and which can be exploited for approximation or analysis, especially when m is large (high-dimensional input space). We provide theorems justifying our AM technique and an algorithm permitting functional approximation and sensitivity analysis. Using accessible, low-dimensional functions as initial examples, we show AM reduces approximation error by an order of magnitude compared to AS, at the expense of more computation. Following this, we revisit the sensitivity analysis by Glaws et al. (2017), who apply AS to analyze a magnetohydrodynamic power generator model, and compare the performance of AM on the same data. Our analysis provides detailed information not captured by AS, exhibiting the influence of each parameter individually along an active manifold. Overall, AM represents a novel technique for analyzing functional models with benefits including: reducing m-dimensional analysis to a 1-D analogue, permitting more accurate regression than AS (at more computational expense), enabling more informative sensitivity analysis, and granting accessible visualizations (2-D plots) of parameter sensitivity along the AM.
UR - http://www.scopus.com/inward/record.url?scp=85077962401&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85077962401
T3 - 36th International Conference on Machine Learning, ICML 2019
SP - 1204
EP - 1212
BT - 36th International Conference on Machine Learning, ICML 2019
PB - International Machine Learning Society (IMLS)
Y2 - 9 June 2019 through 15 June 2019
ER -