Abstract
The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed. The pairwise terms and the embedding terms of the potential are modified in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni50Fe50, Ni80Cr20 and Ni33Fe33Cr33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.
Original language | English |
---|---|
Pages (from-to) | 11-19 |
Number of pages | 9 |
Journal | Computer Physics Communications |
Volume | 219 |
DOIs | |
State | Published - Oct 2017 |
Funding
This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. LKB acknowledges additional support from a fellowship awarded by the Fonds Qu\u00E9b\u00E9cois de recherche Nature et Technologies, the Natural Sciences and Engineering Research Council of Canada, the C-S-Hub at MIT and both the ICoME2 Labex (ANR-11-LABX-0053) and the A*MIDEX projects (ANR-11-IDEX-0001-02) cofunded by the French program \u2018Investissements d'Avenir,\u201D which is managed by the ANR, the French National Research Agency. AT received funding from the Carl Trygger Foundation. We thank Alfredo Correa for insightful discussions.
Keywords
- Alloys
- Force-field
- Radiation damage