Accuracy and variability of radiomics in photon-counting CT: Texture features and lung lesion morphology

Jayasai R. Rajagopal, Jocelyn Hoye, Marthony Robins, Elizabeth C. Jones, Ehsan Samei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The purpose of this study was to evaluate the potential of a prototype photon-counting CT system scanner to characterize liver texture and lung lesion morphology features. We utilized a multi-tiered phantom (Mercury Phantom 4.0) to characterize the noise power spectrum and task-transfer functions of both conventional and photoncounting modes on the scanner. Using these metrics, we blurred three textures models and fifteen model lesions for four doses (CTDIvol: 4, 8, 16, 24 mGy), and three slice thicknesses (1.6, 2.5, 4 mm), for a total of 12 imaging conditions. Twenty texture features and twenty-one morphology features were evaluated. Performance was characterized in terms of accuracy (percent bias of features across different conditions) and variability (coefficient of variation of features due to repeats and averaged across conditions). Compared to conventional CT, photon-counting CT had comparable accuracy and variability for texture features. For morphology features, photon-counting CT had comparable accuracy and less variability than conventional CT. For both imaging modes, change in dose showed slight variation in features and increasing slice thickness caused a monotonic change with feature dependent directionality. Photon-counting CT can improve the characterization of morphology features without compromising texture features.

Original languageEnglish
Title of host publicationMedical Imaging 2019
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Hilde Bosmans
PublisherSPIE
ISBN (Electronic)9781510625433
DOIs
StatePublished - 2019
Externally publishedYes
EventMedical Imaging 2019: Physics of Medical Imaging - San Diego, United States
Duration: Feb 17 2019Feb 20 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10948
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period02/17/1902/20/19

Funding

This study was supported by the National Institutes of Health (NIH) Clinical Center Radiology and Imaging Sciences (RADIS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the NIH Intramural Research Program (NIH Z01 1ZID BC011242, and CL040015). The NIH and Siemens Medical Solutions have a Cooperative Research and Development Agreement providing financial and material support including the photon-counting CT system. The content of this manuscript does not necessarily reflect the views or policies of the Department of Health and Human Services, nor do mention of trade names, commercial products, or organizations imply endorsement by the United States Government.

FundersFunder number
National Institutes of Health
National Institute of Biomedical Imaging and BioengineeringZ01 1ZID BC011242, CL040015

    Keywords

    • Computed tomography
    • Morphology
    • Photon-counting
    • Quantitative imaging
    • Texture

    Fingerprint

    Dive into the research topics of 'Accuracy and variability of radiomics in photon-counting CT: Texture features and lung lesion morphology'. Together they form a unique fingerprint.

    Cite this