Abstract
FeCrAl alloys are rapidly becoming mature candidate alloys for accident tolerant fuel applications. The FeCrAl material class has shown excellent oxidation resistance in high-temperature steam environments, a key aspect of any accident tolerant cladding concept, while also being corrosion resistant, stress corrosion cracking (SCC) resistant, irradiation-induced swelling resistant, weldable, and formable. Current research efforts are focused on design, development and commercial scaling of advanced FeCrAl alloys including large-scale, thin-walled seamless tube production followed by a broad spectrum of degradation evaluations in both normal and off-normal conditions. Included in this discussion is the theoretical analysis of the alloying principles and rules, alloy composition design, and overview of the most recent empirical database on possible degradation phenomena for FeCrAl alloys. The results are derived from extensive in-pile and out-of-pile experiments and form the basis for near-term deployment of a lead-test rod and/or assembly within a commercially operating nuclear power plant.
Original language | English |
---|---|
Title of host publication | Minerals, Metals and Materials Series |
Publisher | Springer International Publishing |
Pages | 1381-1389 |
Number of pages | 9 |
ISBN (Print) | 9783030046385, 9783030046392, 9783319515403, 9783319651354, 9783319728520, 9783319950211 |
DOIs | |
State | Published - 2019 |
Event | 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors 2019 - Boston, United States Duration: Aug 18 2019 → Aug 22 2019 |
Publication series
Name | Minerals, Metals and Materials Series |
---|---|
ISSN (Print) | 2367-1181 |
ISSN (Electronic) | 2367-1696 |
Conference
Conference | 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors 2019 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 08/18/19 → 08/22/19 |
Funding
This research was funded by the U.S. Department of Energy’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program and the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technologies (NEET) program for the Reactor Materials effort. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).
Keywords
- Accident tolerance
- Commercialization
- FeCrAl