Accelerating collaborative filtering using concepts from high performance computing

Mark Gates, Hartwig Anzt, Jakub Kurzak, Jack Dongarra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

28 Scopus citations

Abstract

In this paper we accelerate the Alternating Least Squares (ALS) algorithm used for generating product recommendations on the basis of implicit feedback datasets. We approach the algorithm with concepts proven to be successful in High Performance Computing. This includes the formulation of the algorithm as a mix of cache-optimized algorithm-specific kernels and standard BLAS routines, acceleration via graphics processing units (GPUs), use of parallel batched kernels, and autotuning to identify performance winners. For benchmark datasets, the multi-threaded CPU implementation we propose achieves more than a 10 times speedup over the implementations available in the GraphLab and Spark MLlib software packages. For the GPU implementation, the parameters of an algorithm-specific kernel were optimized using a comprehensive autotuning sweep. This results in an additional 2 times speedup over our CPU implementation.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015
EditorsFeng Luo, Kemafor Ogan, Mohammed J. Zaki, Laura Haas, Beng Chin Ooi, Vipin Kumar, Sudarsan Rachuri, Saumyadipta Pyne, Howard Ho, Xiaohua Hu, Shipeng Yu, Morris Hui-I Hsiao, Jian Li
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages667-676
Number of pages10
ISBN (Electronic)9781479999255
DOIs
StatePublished - Dec 22 2015
Externally publishedYes
Event3rd IEEE International Conference on Big Data, IEEE Big Data 2015 - Santa Clara, United States
Duration: Oct 29 2015Nov 1 2015

Publication series

NameProceedings - 2015 IEEE International Conference on Big Data, IEEE Big Data 2015

Conference

Conference3rd IEEE International Conference on Big Data, IEEE Big Data 2015
Country/TerritoryUnited States
CitySanta Clara
Period10/29/1511/1/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Keywords

  • Alternating Least Squares
  • Autotuning
  • Batched Cholesky
  • Collaborative Filtering
  • GPUs

Fingerprint

Dive into the research topics of 'Accelerating collaborative filtering using concepts from high performance computing'. Together they form a unique fingerprint.

Cite this