Abstract
Complex alumina parts were printed using vat photopolymerization (VPP), which is a stereolithography-based additive manufacturing (AM) technique used to shape ceramic preforms, or green parts. The critical flaw size was determined using classical fracture mechanics techniques. The strength and fracture toughness were measured and compared to flaws detected in x-ray computed tomography (XCT or CT) distributions as well as the fracture surfaces. The strength was lower compared traditionally made alumina, and that is due to layering effects, slurry defects, and printing defects. The critical flaw size from fracture mechanics was 206 µm. XCT has high enough resolution to detect the critical flaw size and much smaller features, where the average flaw size observed in CT scans was around 80–100 µm. The fracture surfaces indicate that flaws causing failure are larger than that of the critical flaw size (∼300 µm), but fracture surfaces do not show definitive features compared to traditionally made ceramics. Since XCT can observe flaws smaller than the critical flaw size, this method can be used as a screening technique.
Original language | English |
---|---|
Journal | International Journal of Ceramic Engineering and Science |
DOIs | |
State | Accepted/In press - 2024 |
Keywords
- additive manufacturing
- alumina
- ceramic slurry vat photopolymerization printing