Abstract
Extrusion-based printing systems have improved significantly over the past several years, allowing for higher throughput, higher temperatures, and larger components. At the same time, advanced materials are being introduced on the market that can provide improved performance over a range of operating conditions. Often these materials incorporate fiber reinforcements, reactive resins, and additives to control reaction kinetics, flow rheology, or thermal stability. This study presents a general framework for evaluating the printability of various candidate materials based on a basic viscoelastic model. The model addresses fundamental requirements for extrusion-based printing, including pressure-driven flow, bead formation, bead functionality, and component-level functionality. The effectiveness of this model for evaluating the impact of compositional variations and identifying appropriate processing conditions has been demonstrated for specific materials on direct write, fused filament fabrication, and large-scale extrusion platforms.
Original language | English |
---|---|
Pages | 495-506 |
Number of pages | 12 |
State | Published - 2020 |
Event | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 - Austin, United States Duration: Aug 7 2017 → Aug 9 2017 |
Conference
Conference | 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 08/7/17 → 08/9/17 |
Funding
A portion of the research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. A portion of the research was sponsored by Efficiency and Renewable Energy, Advanced 00OR22725 with UT-Battelle, LLC.