A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures

Jonathan R. McDaniel, D. Christopher Radford, Ashutosh Chilkoti

Research output: Contribution to journalArticlepeer-review

174 Scopus citations

Abstract

Elastin-like polypeptides (ELPs) are stimulus-responsive peptide polymers that exhibit inverse temperature phase transition behavior, causing an ELP to aggregate above its inverse transition temperature (Tt). Although this property has been exploited in a variety of biotechnological applications, de novo design of ELPs that display a specific Tt is not trivial because the Tt of an ELP is a complex function of several variables, including its sequence, chain length, polypeptide concentration, and the type and concentration of cosolutes in solution. This paper provides a quantitative model that predicts the Tt of a family of ELPs (Val-Pro-Gly-Xaa-Gly, where Xaa = Ala and/or Val) from their composition, chain length, and concentration in phosphate buffered saline. This model will enable de novo prediction of the amino acid sequence and chain length of ELPs that will display a predetermined Tt in physiological buffer within a specified concentration regime, thereby greatly facilitating the design of new ELPs for applications in medicine and biotechnology.

Original languageEnglish
Pages (from-to)2866-2872
Number of pages7
JournalBiomacromolecules
Volume14
Issue number8
DOIs
StatePublished - Aug 12 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures'. Together they form a unique fingerprint.

Cite this