A simple low-latency real-time certifiable quantum random number generator

Yanbao Zhang, Hsin Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, Hiroki Takesue, William J. Munro

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going into their realizations. Most demonstrations focus on high asymptotic generation rates. For this goal, a large number of repeated trials are required to accumulate a significant store of certifiable randomness, resulting in a high latency between the initial request and the delivery of the requested random bits. Here we demonstrate low-latency real-time certifiable randomness generation from measurements on photonic time-bin states. For this, we develop methods to certify randomness taking into account adversarial imperfections in both the state preparation and the measurement apparatus. Every 0.12 s we generate a block of 8192 random bits which are certifiable against all quantum adversaries with an error bounded by 2−64. Our quantum random number generator is thus well suited for realizing a continuously-operating, high-security and high-speed quantum randomness beacon.

Original languageEnglish
Article number1056
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'A simple low-latency real-time certifiable quantum random number generator'. Together they form a unique fingerprint.

Cite this