A review of machine learning in building load prediction

Liang Zhang, Jin Wen, Yanfei Li, Jianli Chen, Yunyang Ye, Yangyang Fu, William Livingood

Research output: Contribution to journalArticlepeer-review

353 Scopus citations

Abstract

The surge of machine learning and increasing data accessibility in buildings provide great opportunities for applying machine learning to building energy system modeling and analysis. Building load prediction is one of the most critical components for many building control and analytics activities, as well as grid-interactive and energy efficiency building operation. While a large number of research papers exist on the topic of machine-learning-based building load prediction, a comprehensive review from the perspective of machine learning is missing. In this paper, we review the application of machine learning techniques in building load prediction under the organization and logic of the machine learning, which is to perform tasks T using Performance measure P and based on learning from Experience E. Firstly, we review the applications of building load prediction model (task T). Then, we review the modeling algorithms that improve machine learning performance and accuracy (performance P). Throughout the papers, we also review the literature from the data perspective for modeling (experience E), including data engineering from the sensor level to data level, pre-processing, feature extraction and selection. Finally, we conclude with a discussion of well-studied and relatively unexplored fields for future research reference. We also identify the gaps in current machine learning application and predict for future trends and development.

Original languageEnglish
Article number116452
JournalApplied Energy
Volume285
DOIs
StatePublished - Mar 1 2021
Externally publishedYes

Funding

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies . The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

FundersFunder number
U.S. Government
U.S. Department of EnergyDE-AC36-08GO28308
Office of Energy Efficiency and Renewable Energy
National Renewable Energy Laboratory

    Keywords

    • Building energy forecasting
    • Building energy system
    • Building load prediction
    • Data engineering
    • Feature engineering
    • Machine learning

    Fingerprint

    Dive into the research topics of 'A review of machine learning in building load prediction'. Together they form a unique fingerprint.

    Cite this