Abstract
The surge of machine learning and increasing data accessibility in buildings provide great opportunities for applying machine learning to building energy system modeling and analysis. Building load prediction is one of the most critical components for many building control and analytics activities, as well as grid-interactive and energy efficiency building operation. While a large number of research papers exist on the topic of machine-learning-based building load prediction, a comprehensive review from the perspective of machine learning is missing. In this paper, we review the application of machine learning techniques in building load prediction under the organization and logic of the machine learning, which is to perform tasks T using Performance measure P and based on learning from Experience E. Firstly, we review the applications of building load prediction model (task T). Then, we review the modeling algorithms that improve machine learning performance and accuracy (performance P). Throughout the papers, we also review the literature from the data perspective for modeling (experience E), including data engineering from the sensor level to data level, pre-processing, feature extraction and selection. Finally, we conclude with a discussion of well-studied and relatively unexplored fields for future research reference. We also identify the gaps in current machine learning application and predict for future trends and development.
Original language | English |
---|---|
Article number | 116452 |
Journal | Applied Energy |
Volume | 285 |
DOIs | |
State | Published - Mar 1 2021 |
Externally published | Yes |
Funding
This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies . The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
Funders | Funder number |
---|---|
U.S. Government | |
U.S. Department of Energy | DE-AC36-08GO28308 |
Office of Energy Efficiency and Renewable Energy | |
National Renewable Energy Laboratory |
Keywords
- Building energy forecasting
- Building energy system
- Building load prediction
- Data engineering
- Feature engineering
- Machine learning