A qcm-based lab-on-a-chip device for real time characterization of shearinduced platelets adhesion and aggregation

Hongwei Sun, Pengtao Wang, Moli Liu, Jin Xu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The long-term goal of this project is to develop a microfluidic device integrated with a quartz crystal microbalance (QCM) sensor to perform real-time monitoring of platelet adhesion and aggregation under various hemodynamic conditions. This Lab- On-a-Chip device was fabricated with softlithography technique and plasma bonding. The gold sensing surface (electrode) of QCM sensor was embedded in the sensing area of microchannel, in which different fluid solutions were driven through to induce required shear flows for protein interaction study. The time-dependent (transient) frequency shift upon flowing blood samples was monitored to characterize the dynamic process of the platelet adhesion and protein interaction. The interaction between recombinant platelet surface receptor glycoprotein Ibα (GPIbα) and von Willebrand factor (vWF) were investigated under both static and dynamic flow conditions. It was found that the association process is much faster than disassociation process. This device functions as a powerful platform for studying the impact of flow pattern and shear stress on platelet function and GPIbα and vWF interaction, and potentially serves as a prototype for cardiovascular diagnostic purposes.

Original languageEnglish
Title of host publicationASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
Pages17-22
Number of pages6
DOIs
StatePublished - 2012
Externally publishedYes
EventASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012

Conference

ConferenceASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period07/8/1207/12/12

Fingerprint

Dive into the research topics of 'A qcm-based lab-on-a-chip device for real time characterization of shearinduced platelets adhesion and aggregation'. Together they form a unique fingerprint.

Cite this