Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population in the industrialized world. Computer assisted analysis has the potential to assist in the early detection of diabetes by regular screening of large populations. The widespread availability of digital fundus cameras today is leading to the accumulation of large image archives of diagnosed patient data that captures historical knowledge of retinal pathology. Through this research we are developing a content-based image retrieval method to verify our hypothesis that retinal pathology can be identified and quantified from visually similar retinal images in an image archive. We will present diagnostic results for specificity and sensitivity on a population of 395 fundus images representing the normal fundus and 14 stratified disease states.
Original language | English |
---|---|
Pages (from-to) | 6744-6747 |
Number of pages | 4 |
Journal | Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference |
State | Published - 2007 |