A Predictive Deep-Reinforcement-Learning-Based Connected Automated Vehicle Anticipatory Longitudinal Control in a Mixed Traffic Lane Change Condition

Haotian Shi, Kunsong Shi, Keshu Wu, Wan Li, Yang Zhou, Bin Ran

Research output: Contribution to journalArticlepeer-review

Abstract

Maintaining safety and efficiency for mixed traffic consisting of connected automated vehicles (CAVs) and human-driven vehicles (HDVs) is an arduous task due to the inherent HDVs’ stochasticity. Especially for longitudinal control, which is the basic function of vehicle automation, prevailing research primarily considers CAV’s car-following control merely the acceleration and deceleration of leading vehicles. However, this approach overlooks the potential disruptions caused by surrounding vehicles executing lane changes, which can significantly impact the control vehicle’s stability and overall safety. Hence, our study introduces a predictive deep reinforcement learning (DRL) longitudinal CAV controller. This innovative approach leverages prediction from a physics-informed neural network as well as the control capability of DRL to better anticipate and mitigate issues arising from lane-changing, enhancing the safety and efficiency of CAVs in such scenarios. Validated by the numerical simulations embedded with the real-world data, the results indicate that the proposed controller significantly enhances the safety and efficiency of CAVs in situations involving lane changes by other vehicles, showcasing its potential as a valuable tool in advancing CAV technology in mixed traffic.

Original languageEnglish
Pages (from-to)26943-26954
Number of pages12
JournalIEEE Internet of Things Journal
Volume12
Issue number14
DOIs
StatePublished - 2025

Keywords

  • Anticipatory longitudinal control
  • connected automated vehicles (CAVs)
  • mixed traffic environment
  • predictive deep reinforcement learning (DRL)

Fingerprint

Dive into the research topics of 'A Predictive Deep-Reinforcement-Learning-Based Connected Automated Vehicle Anticipatory Longitudinal Control in a Mixed Traffic Lane Change Condition'. Together they form a unique fingerprint.

Cite this