A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics

C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho, C. J. Monahan, C. Bouchard, M. A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas, A. Walker-Loud

Research output: Contribution to journalArticlepeer-review

156 Scopus citations

Abstract

The axial coupling of the nucleon, g A, is the strength of its coupling to the weak axial current of the standard model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the standard model in nuclear environments require a quantitative understanding of nuclear physics that is rooted in quantum chromodynamics, a pillar of the standard model. The importance of g A makes it a benchmark quantity to determine theoretically - a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice quantum chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two per cent would be possible by 2020 if two challenges are overcome 1,2 : contamination of g A from excited states must be controlled in the calculations and statistical precision must be improved markedly 2-10 . Here we use an unconventional method 11 inspired by the Feynman-Hellmann theorem that overcomes these challenges. We calculate a g A value of 1.271 ± 0.013, which has a precision of about one per cent.

Original languageEnglish
Pages (from-to)91-94
Number of pages4
JournalNature
Volume558
Issue number7708
DOIs
StatePublished - Jun 7 2018
Externally publishedYes

Funding

We thank C. Bernard, A. Bernstein, P. J. Bickel, C. Detar, A. X. El-Khadra, W. Haxton, Y. Hsia, V. Koch, A. S. Kronfeld, W. T. Lee, G. P. Lepage, E. Mereghetti, G. Miller, A. E. Raftery, D. Toussaint and F. Yuan for discussions. We thank E. Mereghetti for the updated Extended Data Fig. 729. We thank the MILC Collaboration for providing their highly improved staggered quark configurations30 without restriction. Computer time was awarded to CalLat (2016) by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) programme, as well as by the Lawrence Livermore National Laboratory (LLNL) Multiprogrammatic and Institutional Computing programme through a Tier-1 Grand Challenge award. This research used the NVIDIA GPUaccelerated Titan supercomputer at the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract number DE-AC05-00OR22725, the GPU-enabled Surface and RZHasGPU clusters, and Vulcan, a BG/Q supercomputer, all at LLNL. This work was supported by the NVIDIA Corporation (M.A.C.), the DFG and the NSFC Sino-German CRC110 (E.B.), an LBNL LDRD (A.W.-L.), the RIKEN Special Postdoctoral Researcher Program (E.R.), the Leverhulme Trust (N.G.), the US Department of Energy, Office of Science: Office of Nuclear Physics (E.B., C.B., D.A.B., C.C.C., T.K., C.J.M., H.M.-C., A.N.N., E.R., B.J., K.O., P.V. and A.W.-L.); Office of Advanced Scientific Computing (E.B., B.J., T.K. and A.W.-L.); Nuclear Physics Double Beta Decay Topical Collaboration (D.A.B., H.M.-C. and A.W.-L.); and the DOE Early Career Award Program (D.A.B., C.C.C., H.M.-C. and A.W.-L.). This work (E.B., E.R. and P.V.) was performed under the auspices of the US Department of Energy by LLNL under contract number DE-AC52-07NA27344. Part of this work was performed at the Kavli Institute for Theoretical Physics, supported by NSF grant number PHY-1748958. Acknowledgements We thank C. Bernard, A. Bernstein, P. J. Bickel, C. Detar, A. X. El-Khadra, W. Haxton, Y. Hsia, V. Koch, A. S. Kronfeld, W. T. Lee, G. P. Lepage, E. Mereghetti, G. Miller, A. E. Raftery, D. Toussaint and F. Yuan for discussions. We thank E. Mereghetti for the updated Extended Data Fig. 729. We thank the MILC Collaboration for providing their highly improved staggered quark configurations30 without restriction. Computer time was awarded to CalLat (2016) by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) programme, as well as by the Lawrence Livermore National Laboratory (LLNL) Multiprogrammatic and Institutional Computing programme through a Tier-1 Grand Challenge award. This research used the NVIDIA GPU-accelerated Titan supercomputer at the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract number DE-AC05-00OR22725, the GPU-enabled Surface and RZHasGPU clusters, and Vulcan, a BG/Q supercomputer, all at LLNL. This work was supported by the NVIDIA Corporation (M.A.C.), the DFG and the NSFC Sino-German CRC110 (E.B.), an LBNL LDRD (A.W.-L.), the RIKEN Special Postdoctoral Researcher Program (E.R.), the Leverhulme Trust (N.G.), the US Department of Energy, Office of Science: Office of Nuclear Physics (E.B., C.B., D.A.B., C.C.C., T.K., C.J.M., H.M.-C., A.N.N., E.R., B.J., K.O., P.V. and A.W.-L.); Office of Advanced Scientific Computing (E.B., B.J., T.K. and A.W.-L.); Nuclear Physics Double Beta Decay Topical Collaboration (D.A.B., H.M.-C. and A.W.-L.); and the DOE Early Career Award Program (D.A.B., C.C.C., H.M.-C. and A.W.-L.). This work (E.B., E.R. and P.V.) was performed under the auspices of the US Department of Energy by LLNL under contract number DE-AC52-07NA27344. Part of this work was performed at the Kavli Institute for Theoretical Physics, supported by NSF grant number PHY-1748958.

FundersFunder number
A.N.N.
C.C.C.
E.B.
LBNL LDRD
Lawrence Livermore National Laboratory
M.A.C.
NSFC Sino-German CRC110Sino-German CRC110
Oak
Office of Nuclear Physics
US Department of EnergyDE-AC05-00OR22725
National Science FoundationPHY-1748958
U.S. Department of Energy
Directorate for Mathematical and Physical Sciences1748958
National Sleep Foundation
California Department of Fish and Game
Kavli Institute for Theoretical Physics, University of California, Santa Barbara
Office of Science
Advanced Scientific Computing Research
Nuclear Physics
Lawrence Livermore National LaboratoryDE-AC52-07NA27344
Oak Ridge National Laboratory
NVIDIA
Leverhulme Trust
Deutsche Forschungsgemeinschaft
National Natural Science Foundation of China
Norsk Sykepleierforbund
RIKEN

    Fingerprint

    Dive into the research topics of 'A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics'. Together they form a unique fingerprint.

    Cite this