Abstract
The root cause of post-weld baking on the mechanical performance of Al-steel dissimilar resistance spot welds (RSWs) has been determined by machine learning (ML) and finite element modeling (FEM) in this study. A deep neural network (DNN) model was constructed to associate the spot weld performance with the joint attributes, stacking materials, and other conditions, using a comprehensive experimental dataset. The DNN model positively identified that the post-weld baking reduces the joint performance, and the extent of degradation depends on the thickness of stacking materials. A three-dimensional finite element (FE) model was then used to investigate the root cause and the mechanism of the baking effect. It revealed that the formation of high thermal stresses during baking, from the mismatch of thermal expansion between steel and Al alloy, causes damage and cracking of the brittle intermetallic compound (IMC) formed at the interface of the weld nugget during welding. This in turn reduces the joint performance by promoting undesirable interfacial fracture when the welds were subjected to externally applied loads. The FEM model further revealed that increase in structural stiffness, because of increase in steel sheet thickness, reduces the thermal stresses at the interface caused by the thermal expansion mismatch and consequently lessens the detrimental effect of post-weld baking on the joint performance.
Original language | English |
---|---|
Article number | 6 |
Journal | Journal of Manufacturing and Materials Processing |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2023 |
Funding
This research was funded by the US Department of Energy, Office of Vehicle Technologies, under a contract with Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non- exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). US Department of Energy, Office of Vehicle Technologies, under a contract with Oak Ridge National Laboratory (ORNL). General Motor LLC.
Keywords
- finite element model
- machine learning
- post-weld baking
- resistance spot welds