Abstract
Manufactured graphite is a preferred material for in-core components of molten salt reactors and fluoride salt-cooled high-temperature reactors, which are in permanent contact with liquid salts. However, owing to the porous nature of nuclear graphite, under certain conditions, molten salts may intrude graphite's pores and affect graphite's properties and functionality. Therefore, a better understanding of molten salt intrusion (distribution across sample cross section and penetration depth) is needed to assess its effects. In this work, we have demonstrated the use of neutron imaging (computed tomography) in the evaluation of salt penetration and distribution of a wide range of graphite grades with diverse microstructures that have been subjected to FLiNaK (LiF–NaF–KF) intrusion at 750 °C and 5 bar pressure for 12 h. Because of the great neutron attenuation contrast from scattering and adsorption between Li (from FLiNaK) and the graphite matrix, we have obtained direct visualization of FLiNaK salt distribution in the salt-impregnated graphites for the first time. Three-dimensional reconstructed images and cross-sectional concentration profiles demonstrate that salt penetration and density distribution are greatly dependent on the microstructural properties of the graphite grade.
Original language | English |
---|---|
Article number | 118258 |
Journal | Carbon |
Volume | 213 |
DOIs | |
State | Published - Sep 2023 |
Funding
This work was supported by the US Department of Energy's Office of Nuclear Energy under the Advanced Reactor Technologies Program. Oak Ridge National Laboratory is managed by UT-Battelle LLC under contract DE-AC05-00R22725. This research used resources at the High Flux Isotope Reactor, a US Department of Energy Office of Science User Facility operated by the Oak Ridge National Laboratory. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This work was supported by the US Department of Energy's Office of Nuclear Energy under the Advanced Reactor Technologies Program. Oak Ridge National Laboratory is managed by UT-Battelle LLC under contract DE-AC05-00R22725. This research used resources at the High Flux Isotope Reactor, a US Department of Energy Office of Science User Facility operated by the Oak Ridge National Laboratory. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- FLiNaK infiltration
- Molten salt reactor
- Neutron tomography
- Nuclear-grade graphite