TY - GEN
T1 - A model predictive control scheme formulation for active rectifiers with LCL filter
AU - Benzaquen, Joseph
AU - Adib, Aswad
AU - Fateh, Fariba
AU - Mirafzal, Behrooz
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/9
Y1 - 2019/9
N2 - In this paper, a step-ahead direct power control (DPC) scheme with reduced sensor count for grid-connected active rectifiers with LCL filter is formulated. Compared to classical model predictive control (MPC) schemes, which implement an L filter, the proposed controller is designed to operate with an LCL filter and thus benefit from higher harmonic attenuation and lower component size and weight. In this work, an expression is derived to allow the prediction of the grid-side current by only measuring the dc-bus voltage, grid voltages, and grid-side line currents. As a result, only 6 sensors are required as opposed to 9 or 12 sensors. An extensive digital computer simulation using Matlab/Simulink is used to demonstrate the validity and performance of the proposed step-ahead DPC scheme. The widely used classical proportional integral (PI)-based power controller is used as a reference to benchmark the steady-state and dynamic performance of the proposed control scheme. The results validate the proposed controller and show its sound steady-state performance consisting of high quality grid-side currents with low Total Harmonic Distortion and unity power factor. In addition, robust and rapid dynamic performance is demonstrated when compared to the classical PI-based controller.
AB - In this paper, a step-ahead direct power control (DPC) scheme with reduced sensor count for grid-connected active rectifiers with LCL filter is formulated. Compared to classical model predictive control (MPC) schemes, which implement an L filter, the proposed controller is designed to operate with an LCL filter and thus benefit from higher harmonic attenuation and lower component size and weight. In this work, an expression is derived to allow the prediction of the grid-side current by only measuring the dc-bus voltage, grid voltages, and grid-side line currents. As a result, only 6 sensors are required as opposed to 9 or 12 sensors. An extensive digital computer simulation using Matlab/Simulink is used to demonstrate the validity and performance of the proposed step-ahead DPC scheme. The widely used classical proportional integral (PI)-based power controller is used as a reference to benchmark the steady-state and dynamic performance of the proposed control scheme. The results validate the proposed controller and show its sound steady-state performance consisting of high quality grid-side currents with low Total Harmonic Distortion and unity power factor. In addition, robust and rapid dynamic performance is demonstrated when compared to the classical PI-based controller.
UR - http://www.scopus.com/inward/record.url?scp=85076722841&partnerID=8YFLogxK
U2 - 10.1109/ECCE.2019.8913282
DO - 10.1109/ECCE.2019.8913282
M3 - Conference contribution
AN - SCOPUS:85076722841
T3 - 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019
SP - 3758
EP - 3763
BT - 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 11th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2019
Y2 - 29 September 2019 through 3 October 2019
ER -