TY - JOUR
T1 - A magnetic and Mössbauer spectral study of TbFe11Ti and TbFe11TiH
AU - Piquer, Cristina
AU - Hermann, Raphaël P.
AU - Grandjean, Fernande
AU - Isnard, Olivier
AU - Long, Gary J.
PY - 2003/11/5
Y1 - 2003/11/5
N2 - Magnetic and iron-57 Mössbauer spectral measurements between 4.2 and 640 K have been carried out on TbFe11Ti and TbFe11TiH. The insertion of hydrogen into TbFe11Ti to form TbFe11TiH increases its ordering temperature, magnetization, magnetic hyperfine fields, and isomer shifts as a result of lattice expansion. Further, the insertion of hydrogen reinforces the basal magnetic anisotropy of the terbium sublattice and, as is shown by ac susceptibility measurements and thermomagnetic analysis, the spin reorientation observed in TbFe11Ti at 338 K disappears in TbFe11TiH. The Mössbauer spectra have been analysed with a model that considers both the easy magnetization direction and the distribution of titanium atoms in the near-neighbour environment of the three crystallographically distinct iron sites. The assignment and the temperature dependencies of the hyperfine fields and isomer shifts are in complete agreement with a Wigner-Seitz cell analysis of the three iron sites in RFe11Ti and RFe11TiH, where R is a rare-earth element. A complete analysis of the quadrupole interactions in both magnetic phases and in the paramagnetic phase of TbFe11Ti supports the Mössbauer spectral analysis, and indicates that in the basal magnetic phase the iron magnetic moments are oriented along the equivalent [100] and [010] directions of the unit cell.
AB - Magnetic and iron-57 Mössbauer spectral measurements between 4.2 and 640 K have been carried out on TbFe11Ti and TbFe11TiH. The insertion of hydrogen into TbFe11Ti to form TbFe11TiH increases its ordering temperature, magnetization, magnetic hyperfine fields, and isomer shifts as a result of lattice expansion. Further, the insertion of hydrogen reinforces the basal magnetic anisotropy of the terbium sublattice and, as is shown by ac susceptibility measurements and thermomagnetic analysis, the spin reorientation observed in TbFe11Ti at 338 K disappears in TbFe11TiH. The Mössbauer spectra have been analysed with a model that considers both the easy magnetization direction and the distribution of titanium atoms in the near-neighbour environment of the three crystallographically distinct iron sites. The assignment and the temperature dependencies of the hyperfine fields and isomer shifts are in complete agreement with a Wigner-Seitz cell analysis of the three iron sites in RFe11Ti and RFe11TiH, where R is a rare-earth element. A complete analysis of the quadrupole interactions in both magnetic phases and in the paramagnetic phase of TbFe11Ti supports the Mössbauer spectral analysis, and indicates that in the basal magnetic phase the iron magnetic moments are oriented along the equivalent [100] and [010] directions of the unit cell.
UR - http://www.scopus.com/inward/record.url?scp=0242468211&partnerID=8YFLogxK
U2 - 10.1088/0953-8984/15/43/021
DO - 10.1088/0953-8984/15/43/021
M3 - Article
AN - SCOPUS:0242468211
SN - 0953-8984
VL - 15
SP - 7395
EP - 7409
JO - Journal of Physics Condensed Matter
JF - Journal of Physics Condensed Matter
IS - 43
ER -