Abstract
Bradbury Nielsen gates are well known devices used to switch ion beams and are typically applied in mass or mobility spectrometers for separating beam constituents by their different flight or drift times. A Bradbury Nielsen gate consists of two interleaved sets of electrodes. If two voltages of the same amplitude but opposite polarity are applied the gate is closed, and for identical (zero) potential the gate is open. Whereas former realizations of the device employ actual wires resulting in difficulties with winding, fixing and tensioning them, our approach is to use two grids photo-etched from a metallic foil. This design allows for simplified construction of gates covering large beam sizes up to at least 900 mm2 with variable wire spacing down to 250 μm. By changing the grids the wire spacing can be varied easily. A gate of this design was installed and systematically tested at TRIUMF's ion trap facility, TITAN, for use with radioactive beams to separate ions with different mass-to-charge ratios by their time-of-flight.
Original language | English |
---|---|
Pages (from-to) | 97-103 |
Number of pages | 7 |
Journal | International Journal of Mass Spectrometry |
Volume | 309 |
DOIs | |
State | Published - Jan 1 2012 |
Funding
This work was supported, in part, by the US Department of Energy, the US National Science Foundation, the Natural Sciences and Engineering Research Council of Canada and the Canadian National Research Council. One of the authors (TB) acknowledges support by evangelisches Studienwerk e.V. Villigst. S.E. acknowledges support from the Vanier CGS program and M.K. was funded by the DAAD RISE program . We would like to thank M. Solyali for the construction of the gate.
Keywords
- Bradbury Nielsen gate
- Ion mass spectrometry
- Photo etched Bradbury Nielsen ion gate
- TITAN
- Time focus
- Time of flight separation