A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear

P. Mantica, C. Angioni, C. Challis, G. Colyer, L. Frassinetti, N. Hawkes, T. Johnson, M. Tsalas, P. C. Devries, J. Weiland, B. Baiocchi, M. N.A. Beurskens, A. C.A. Figueiredo, C. Giroud, J. Hobirk, E. Joffrin, E. Lerche, V. Naulin, A. G. Peeters, A. SalmiC. Sozzi, D. Strintzi, G. Staebler, T. Tala, D. Van Eester, T. Versloot

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)PRLTAO0031-900710.1103/PhysRevLett.102.175002] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

Original languageEnglish
Article number135004
JournalPhysical Review Letters
Volume107
Issue number13
DOIs
StatePublished - Sep 22 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'A key to improved ion core confinement in the JET tokamak: Ion stiffness mitigation due to combined plasma rotation and low magnetic shear'. Together they form a unique fingerprint.

Cite this