Abstract
In this paper we present a hybrid algorithm comprised of differential evolution, coupled with the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton optimization algorithm, for the purpose of identifying a broad range of (meta)stable TinO2n nanoparticles, as an example system, described by Buckingham interatomic potential. The potential and its gradient are modified to be piece-wise continuous to enable use of these continuous-domain, unconstrained algorithms, thereby improving compatibility. To measure computational effectiveness a regression on known structures is used. This approach defines effectiveness as the ability of an algorithm to produce a set of structures whose energy distribution follows the regression as the number of TinO2n increases such that the shape of the distribution is consistent with the algorithm's stated goals. Our calculation demonstrates that the hybrid algorithm finds global minimum configurations more effectively than the differential evolution algorithms, widely employed in the field of materials science. Specifically, the hybrid algorithm is shown to reproduce the global minimum energy structures reported in the literature up to n = 5, and retains good agreement with the regression up to n = 25. For 25 < n < 100, where literature structures are unavailable, the hybrid effectively obtains structures that are in lower energies per TiO2 unit as the system size increases.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Computational Materials Science |
Volume | 141 |
DOIs | |
State | Published - Jan 2018 |
Funding
Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division and by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning ( NRF-2016M3D1A1919181 ). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Keywords
- Atomistic simulations
- Differential evolution
- Global structure search algorithm
- Hybrid algorithm
- Titanium dioxide (TiO)