Abstract
Background. Performing back trajectory and forward trajectory using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) is a reliable approach for assessing particle transport after release among mid-field atmospheric models. HYSPLIT has an externally facing online interface that allows non-expert users to run the model trajectories without requiring extensive training or programming. However, the existing HYSPLIT interface is limited if simulations have a large amount of meteorological data and timesteps that are not coincident. The objective of this study is to design and develop a more robust tool to rapidly evaluate hazard transport conditions and to perform risk analysis, while still maintaining an intuitive and user-friendly interface. Methods. HYSPLIT calculates forward and backward trajectories of particles based on wind speed, wind direction, and the corresponding location, timestamp, and Pasquill stability classes of the regions of the atmosphere in terms of the wind speed, the amount of solar radiation, and the fractional cloud cover. The computed particle transport trajectories, combined with the online Proton Transfer Reaction-Mass Spectrometry (PTR-MS) data (https://figshare.com/articles/dataset/ARL_Data_from_PROS_station_at_Hanford_site/19993964), can be used to identify and quantify the sources and affected area of the hazardous chemicals’ emission using the potential source distribution function (PSDF). PSDF is an improved statistical function based on the well-known potential source contribution function (PSCF) in establishing the air pollutant source and receptor relationship. Performing this analysis requires a range of meteorological and pollutant concentration measurements to be statistically meaningful. The existing HYSPLIT graphical user interface (GUI) does not easily permit computations of trajectories of a dataset of meteorological data in high temporal frequency. To improve the performance of HYSPLIT computations from a large dataset and enhance risk analysis of the accidental release of material at risk, a geospatial risk analysis tool (GRAT-GUI) is created to allow large data sets to be processed instantaneously and to provide ease of visualization. Results. The GRAT-GUI is a native desktop-based application and can be run in any Windows 10 system without any internet access requirements, thus providing a secure way to process large meteorological datasets even on a standalone computer. GRAT-GUI has features to import, integrate, and convert meteorological data with various formats for hazardous chemical emission source identification and risk analysis as a self-explanatory user interface. The tool is available at https://figshare.com/articles/software/GRAT/19426742.
Original language | English |
---|---|
Article number | e14664 |
Journal | PeerJ |
Volume | 11 |
DOIs | |
State | Published - Jan 2023 |
Funding
Daehyun Wee from Ewha Womans University provided resources and documents during manuscript preparation. The opinions expressed are solely based on the research results of the authors. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the US government purposes. The following grant information was disclosed by the authors: Department of Energy (DOE) NNSA AU31 program. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle Memorial Institute: DE-AC05-76RL01830. Laboratory Directed Research and Development (LDRD) of the Physical Sciences Directorate of the Oak Ridge National Laboratory (ORNL). UT-Battelle, LLC, for the DOE: DE-AC05-00OR22725. This work is supported by the Department of Energy (DOE) NNSA AU31 program. The Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. The Strategic Laboratory Directed Research and Development (LDRD) of the Physical Sciences Directorate of the Oak Ridge National Laboratory (ORNL) supported part of Xiao-Ying Yu’s time to prepare the manuscript. ORNL is managed by UT-Battelle, LLC, for the DOE under contract number DE-AC05-00OR22725. This article has been supported in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the DOE. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Keywords
- Chemical hazard assessment
- Computer science
- Geospatial risk
- Graphical user interface
- HYSPLIT
- Open source
- PSDF
- Software engineering