A genomic catalog of Earth’s microbiomes

IMG/M Data Consortium

Research output: Contribution to journalArticlepeer-review

426 Scopus citations

Abstract

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.

Original languageEnglish
Pages (from-to)499-509
Number of pages11
JournalNature Biotechnology
Volume39
Issue number4
DOIs
StatePublished - Apr 2021

Funding

This work was conducted by the US DOE Joint Genome Institute, a DOE Office of Science User Facility (contract no. DE-AC02–05CH11231), and used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US DOE (contract no. DE-AC02–05CH11231). This work was also supported as part of the Genomic Sciences Program DOE Systems Biology KBase (award nos. DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725, and DE-AC02-98CH10886).

Fingerprint

Dive into the research topics of 'A genomic catalog of Earth’s microbiomes'. Together they form a unique fingerprint.

Cite this