Abstract
This paper summarizes the fault mechanisms specifically for the overvoltage protection schemes in power electronic converters and the resulted power electronics enabled systems. A flexible and secure evaluation platform for overvoltage protection, has also been presented based on this conceptual mechanism. The proposed platform aims at testing the protection performance of distinctive overvoltage protection schemes. It would be applied to verify the effectiveness, identify potential strengths and weaknesses, and obtain the most critical protection response time to provide sufficient engineering insights for the designer. The operation principle and detailed design guideline have been presented first. The comprehensive component stress has been analyzed. An intensive set of LTSpice simulations have been conducted to show the validity of the proposed assessment approach.
Original language | English |
---|---|
Title of host publication | 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 877-882 |
Number of pages | 6 |
ISBN (Electronic) | 9781728146294 |
DOIs | |
State | Published - Jun 2020 |
Event | 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020 - Chicago, United States Duration: Jun 23 2020 → Jun 26 2020 |
Publication series
Name | 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020 |
---|
Conference
Conference | 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020 |
---|---|
Country/Territory | United States |
City | Chicago |
Period | 06/23/20 → 06/26/20 |
Funding
The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency- Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001114 in the BREAKERS program monitored by Dr. Isik Kizilyalli. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001114 in the BREAKERS program monitored by Dr. Isik Kizilyalli. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/ doe-public-access-plan).
Keywords
- Overvoltage protection
- fault mechanisms
- pulse tester